
LAMS-2607

CIC-14”REPORTCOLLECTION
REPRODUCTION

con

LOS ALAMOS SCIENTIFIC LABORATORY
OF THEUNIVERSITYOF CALIFORNIAo LOSALAMOS NEW MEXICO

THE lVY SYSTEM

. .

. I

LEGAL NOTICE

l%isreportwas preparedas an accountofGovern-
ment sponsoredwork. NeithertheUnitedStates,northe
Commission,noranypersonactingon behalfoftheCom-
mission:

A. Makesanywarranty orrepresentation,expressed
or implied,withrespecttotheaccuracy,completeness,or
usefulnessoftheinformationcontainedinthisreport,or
thattheuseofanyinformation,apparatus,method,or pro-
cessdisclosedinthisreportmay notinfringeprivately
ownedrights;or

B. Assumes any liabilitieswithrespecttotheuse
of,or fordamagesresultingfrom theuseofanyinforma-
tion,apparatus,method,or processdtsclosedinthisre-
port.

As usedintheabove,“personactingonbehalfof the
Commission”includesany employeeor contractorofthe
Commission,oremployeeofsuchcontractor,totheextent
thatsuchemployeeor contractoroftheCommission,or
employeeof such contractorprepares,disseminates,or
providesaccessto,anyinformationpursuantto hisem-
ploymentorcontractwiththeCommission,orhisemploy-
mentwithsuchcontractor.

PrintedinUSA Price$3.50. Avatlablefrom the

OfficeofTechnicalServices
U. S.DepartmentofCommerce
Washington25,D. C.

LAMS-2607
MATHEMATICS AND COMPUTERS
(TID-4500,16thEd.)

I
I

LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITYOF CALIFORNIA LOSALAMOS NEW MEXICO

REPORT WRITTEN August1961

REPORT DISTRIBUTED: October6,1961

THE F/Y SYSTEM

by

ForrestW. Brinkley
BengtG. Carlson

ChesterS. Kazek,Jr.
ClarenceE. Lee
ZaneC. Motteler

MANUAL EDITOR: ZaneC. Motteler

ContractW-7405-ENG. 36 withtheU. S.AtomicEnergyCommission

All LAMS reports are informal documents, ueually prepared for a special pur-
pose aid primarily prepared for uee wfttdn the Laheratory rather than for
general distribution. TM report hae net been edited, reviewed, or verified
for aoouracy. All LAMS reports exprese the views of the authors ae of the
time they were written and do net nec.essarfly reflect the epinions of the Loe
Alamos Scientific Laboratory or the final opinion of tbe authors on the subject.

-1-

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

H!rY

ABSTRACT

IVY, an algebraic coding system for the IBM 7090 and 7030 elec-

1 tronic da’taprocessing machines, i.sdescribed. A sample code is first

illustrated for purposes of familiarization. The general features of the

I IVY system are then discussed in the Inixoduction. Tne body of the text

discusses card types, the entry of data, remarks, and calling sequences,

I and the formats for writing code in the IVY algebraic language. Finally,

I subroutines incorporated in the IVY system and error indications given by

I the system are described, and some coding exxnples are shown. The final

I chapter is composed of tables for reference purposes. The appendices dis-

1 cuss more sophisticated coding techniques and the longhand coding conven-

1 tions for the 7090 and 7030.

-3-

Ivy DATE
7317417517617717817S160

PAGE NAME PROBLEM
26 JUNE I J$EhBLI$W DI$T PR$)DUCT Dl$ T P RI#) D

Line No. I 2 72 CODE

I

2

3

4

5

6

7

8

9

10

II

12

13

14

Is

16

17

18

19

20

21

22

23

I

I
I—

I

I

I

II

H

I

I
II

* ❑ JOEABL$W,A7-5360~212 D4TTOII02HIOOOO0

s (0), A(O), X(4), L(3), R(2)

D A0(7) =2.15, 3.0), .223 +1, 5.732.-2.71,-.032-1, .7S6,

B@(7) =9.2222,.0D063, 2.575, -. 057-I,-33.233-5, Z3I6I7,.43,

FL6W, SUER, T(1)

R RI= CRP. (OIjTh PRODUCT=) 1.0.1.7 .2.SSS

R R2=ERR@R.hCWNTSA 13FATHEATW13&VECT@RSAARE A NOT AEQUAL. $$$

c FLOW ACOOE.ACONVERTS A AND ~ GOES ATO A SUBR&JTINE .

A SWR2, I

I

I

I

I
I

I

I

I

I
I

([1 I lFLIiIW, (s p,$AP: $R02,2), ($ P,suBR:AO($w): 613($ w]: T($wA)+I),

I

I

I

I

I

I

I

I

I

I
.

F,’
($ P,LI)

.:
g ($? $PR: SF, RI(SWP): $PI, T($WA)+ 1) ,($P, SLD), -. .

: ‘-k
xi

61

LI , ($P, $PR: $P, R2($WP)), ($P, $LD), $E. FL~W, ---

I r+
-Oxlt

I
] A $WR2,2 — IJ

1 SUOR. X4, $D(4), $DI, XI, $D2=X2. $D3=X3, $D4=0,

I Xl=$iI(X4+l, $WC), X2=$ Z(X4+2, $WC), I
(LI)XI-X2=NZ, X2=$ Z(X4+I, SWA), X3=$Z(X4+2. $WA),

.
L2, $D4=$M+$Z(X2+I)% $Z(X3+I),

X2=X2+ 1, X3=X3+1, Xl= Xl-1, (L2) Xl= Ni!,

I p xl =$ Z(X4+3), Sz(xl) :$D4,
i

I

I

I

I

I

I

I

I

I

I

I

I

I

I I

I I
I I

I I

I I
II— -—

L3, XI. A=$DI, X2. A=$D2, X3.A=5D3, (X4+5) ,

Ll, X4=X4-I, (L3),
a-

)

A $RD2, I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I
I

I

I

I

I

I

I

I

A SIMPLE AND COMPLETE IVY CODE

-4-

PREFACE

The facing page illustrates a complete, though trivial, code in

the IVY language, for finding the dot product of two vectors. This is

included at the start of the manual in order to familiarize the reader im-

mediately with the appearance of a finished IVY code. As the discussion

in the manual proceeds, the reader can occasionsll.yrefer back b this

example for enlightenment on some of the techniques discussed. FinaX1.y,

in Chapter 8, a discussion of the organization and philosophy of this

code wild.occur, a discussion which applies to any IVY code regardless of

its length.

-5-

ACKNOWLEIXXMENTS

The editor is indebted to Ben@

Forrest Brinkley, and Clarence Lee for

this manual, much of

helpful suggestions;

Sue Vandervoort,

the final draft;

the examples and

for

and

which was done on

to Justine Stehl,

Carlson, Chester Kazek, Jr.,

their careful proof reading of

their own time, and for their many

for producing the IVY tree; to

typing the rough draft;

to Bea Hindman, for her

drawing the illustration.

to Grace Cole, for typing

excellent job in lettering

-7-

CONTENTS

Abstract

A Simple and Complete IVY Code

Preface

Acknowledgements

Table of Contents

Introduction

Chapter 1.

Chapter 2.

Chapter 3.

Chapter k.

Chapter ~.

Chapter 6.

Chapter 7.

Chapter 8.

Chapter 9.

Preliminary Remarks

Coding Forms and Types of Cards

Definition and I.aadingof Data, Remarks, and
Calling Sequence Blocks

The IVY Algebraic Language

Flow of Control, Calling Sequences, and the
Execute Statement

IVY Subroutines

IVY Error Indications

Coding Examples

Summary and Tables

Appendix 1. Manipulating the Symbol Table

Appendix 2. The 7090 Ion@and Instruction Set

Appendix 3.The 7030 Imnghand Instruction Set

Index

Page

3
4

5

7

9
11

17

21

43

68

97

118

1’37

162

185

203

210

239

264

-9-

INTRODUCTION

The coding system described in this manual, the IVY system, repre-

sents a considerable extension, sophistication, and simplification of ear-

lier attempts by the authors on the design of an efficient and practical

coding system for both the casual and experienced programmer. Frequently

an individual, usually called a “programmer” or “code+’in this manual,

concerned with the solution of a complicated problem, must resort to the

use of computers. For such people IVY was designed. Detailed knowledge

of the behavior of various different computers is not required, but, if

available, it can be applied when ~ fancy

by an experienced programmer conversant with

are warranted. However, it is believed that

in mathematical physics amenable to computer

coding techniques (presumably

a particular class of machines)

the vast ma~ority of problems

solution can be solved ade-

quately, almost in their entirety, in the simple algebraic language sup-

pliedby IVY.

The IVY system is a load-and-go, one-pass compiler-assembler con-

sisting of an algebraic language which can be used on any of a class of

computers for which the system is designed, as well as facilities for cod-

ing in the language of

run. The main purpose

the particular computer on which a program is being

of the system is to simplify and expedite the

-11-

programming of problems and the debugging of resulting codes, the schedul.

ing of machine time in installations with two or more types of machines,

the exchange of codes, and the use of these at other installations.

Another purpose of the system is to provide a load-and-go compiler which

gives the programmer closer touch with the computer hardware, besides

supplying numerous other new and uniqye features, many of which have never

before been offered in any system of this type.

The IVY algebraic coding system has been designed for coders who

are somewhat familiar with electronic computers and programming tech-

niques, but who do not have a detailed knowledge of a particular computer.

The algebra itself is written in a system called machine algebra, as

opposed to FORTRAN and other algebraic coding systems which simulate

~algebra, that is, the algebra of equations and formulas in the

traditional mathematical.sense. This machine algebra is a system similar

to display algebra except in conventions regarding the use of parentheses.

In addition, the coder is allowed (and often required) to specify actual

index registers (unlike FORTRAN), to utilize a “store-address’’feature,

and to construct loops and sequences of code fully as complex as those

possible in longhand coding, without the many restrictions imposed by

FORTRAN-like systems. A code in the IVY algebraic language will be ac-

cepted, unchanged, by any computer for which IVY is available.

As previously mentioned, a longhand coding system is available in

IVY, which allows the entry of ~ instructions in the instruction set of

the particular machine being used, following IVY addressing conventions.

-12-

Of course, use of this feature will make an IVY

machines of a different type. Nevertheless, in

code incompatible with

practice such longhand

portions of a code are usually short, and a separate set of longhand

cards can be produced for each computer, and one set substituted for

another when one changes computers. For the programmer who is interested

only in longhand coding for a particular machine, IVY

load-and-go longhand coding system.

The “IVY” system consists essentially of three

program (#IJl),the assembly program (@P) and various

punch, tape manipulation, etc.). Only that portion of

presents a fast

parts: the loading

subroutines (print,

IVY currently in

use is in core memory at any one time;

other packages as needed. Thus all but

available to the problem program. Core

a master control program calls in

a few thousand words of core are

storage is never taken up by un-

converted code, which, instead, is written on a tape designated by the

programmer at initial loading time. Once a progrsm is debugged, this tape

may be saved and used to load the program whenever it is run thereafter,

saving some machine time, since this tape contains a condensed version

the code. This tape will in general not be interchangeable among

machines of different type for which IVY is available, since the con-

densed code on the tape is in a partially assembled form.

Each IVY deck begins with an “S” or “start” card,

IVY for a new program. (IVY programs can be

in the card reader or on a BCD tape prepared

stacked one

by off-line

of

which initializes

behind another

card-to-tape

-13-

1

equipment). This “S” card also contains specificationsof the basic quan-

tities of the particular program, such as the number of independent “store

address” quantities, the number of index registers desired (which maybe

more than the particular machine contains, in which case the extra index

registers are simulated with a slight loss of efficiency), the number of

formulas desired, and the maximum number of branch references within a

formula. Following the “S” card, cards controlling the definitions and

loading of data, remarks, and calling sequence entries, may occur. The

instruction cards are normally at the end of a deck. Preceding, and in-

termixed with, the instruction cards are “A” or “assemble” cards which

control the writing of the code on tape and its subsequent conversion

into machine language. The code may be followed by an “X” or “execute”

card, which specifies the formula set at which execution starts.

The chief advsntage of IVY, aside from its simplicity, is that no

preliminary processing is necessary, such as obtaining binary cards from

a separate assembly program. Thus, not only is the assembly process im-

mediately under the programmer’s control at all times, but also the

source deck and object deck are one and the same. Corrections can be

made in the source deck without the necessity of a tedious reassembly to

obtain a new object deck. Furthermore, because of a unique new type of

coding form, one comes closer than ever before to punching cards directly

from the flow chart. And finally, IVY contains a feature which enables

one to obtain a listing of his code if desired, at the loading time.

During its one-pass examination of the source deck IVY detects a

-14.

great many different types of errors. If a detectable error occurs, IVY

prints out the contents of the card on which the error occurred, one or

more symbols to aid in localizing the error on the card, and a number.

This number can be looked up in a table which is available at the console

of each machine for which IVY is available, and which will be distributed

to manual holders separately from this manual. The table entry gives an

exact description of the error. It is in the detection and treatment of

errors that one of the chief advantages of IVY occurs. If errors are de-

tected in code, for instance, the programmer is still permitted to exe-

cute his progrsm up to that point where the first executed error was de-

tected. From this point a transfer is made to IVY, which prints out a

comment to the effect that execution cannot proceed further, and gives

some indication as to where this point is located. Similarly, if a data

block has been defined or loaded incorrectly, references to this block

are replaced

run, obtains

but also the

by similar transfers. Thus the programmer, in a debugging

not only information on coding errors detectable by IVY,

results of executing the problem code to the point of the

first error encountered in execution, allowing him to ferret out both

coding errors and logical errors in one and the same run. As far as is.— .— .

known, IVY is the first programming system ever designed to allow this

feature. Of course it is possible that errors detected may be of such

a magnitude as to make compilation impossible, in which case IVY will

suppress execution. However, it must be asserted that errors of such

magnitude seldom occur, and that IVY is unique in failing to penalize

-15-

programmers for minor programming errors, by allowing execution when

possible. (No claim can be made that ald possible detectable errors are

caught, since to do this would require an impractically long program.

Hopefully a useful balance between detectable and non-detectable errors

has been maintained.)

The IVY system and its features, as outlined in this Introduction,

are discussed in detail in subsequent chapters, with special.emphasis on

the algebraic system and its conventions. A knowledge of the algebraic

addressing conventions is necessary to code in one of the particular longh-

and systems, which therefore are described in appendices at the end of

the manual, briefly but completely, and in a manner assuming some famil-

iarity with earlier chapters, and, of course, the particular computers

being utilized.

-16-

CHAPTER 1

PRELIMINARY REMARKS

Character set. The character set used by IVY is the well-known

Hollerith set, i.e., the character set used by FORTRAN, which is avail-

able on the IBM 026 punch. This set consists of the alphabetic upper-

case characters, the numbers O-9, and a few punctuation marks and special

characters. Limited as it is, this character set will be used until such

time, if ever, as extended character set keypunches (IBM 9210) become

generaUy available. For reference purposes, the Hollerith set consists

of the characters O (numeric zero), 1) 2y 3P 49 53 69 79 89 9)Aj B> c,

D, E, F, G, H, I, J, K, L, M, N, ~ (alphabetic “@”), P, Q, R, S, T, U, V,

w, x, Y, z, +, -, *, /,=9 ‘, ●9 :> #$ ($)~ co-$ and bl-a**

Symbols. IVY symbols and symbolic names (with the exception of

a few special symbols mentioned later) must consist only of alphabetic

characters, that is, of the characters A, B, C,...jZ. Symbols may be of

any length up to 6 characters. Examples: MB, SAM, =, c, pm,

vEL@Y.

Special symbols. Certain symbols for internal IVY subroutines,

-17-

data blocks, and operation conventions, start with the character “$”,

which is not available as a symbol for IVY remarks, data, or code. Two

of these symbols, $LD and @l?j were encountered in the Introduction.

All “$” symbols will.be discussed and defined as the need arises; a

table of “@” symbols appears in Chapter 9, page 187. Note that only

these internal IVY symbols begin with “$”: ~ symbol defined by the

programmer must begin with an alphabetic character.

In addition, the programmer may define symbols for certain numbered

quantities and numbered blocks on the “S” card (see below, page 26), e.g.,

Al, A2, etc. for stored addresses (page 28); Xl, X2,..., for index regis-

ters (page 28); Ll, Ii?,...,for internal brsnch references (page 28); as

well as numbered blocks beginning with an alphabetic symbol as defined

above, used only to represent

29).

*
The Svmbol Table. All

remarks and calling sequence blocks (page

nrozrammer-defined swnbols are placed in
the IVY symbol table. T%s ta~le-consists of two ~arts: (1)-a twenty-
six entry table, with each entry corresponding to one letter of the
alphabet, which is always in core, and (2) a variable length table hav-
ing one entry for each symbol of two or more characters, which is con-
structed by IVY as the symbols are defined. Each entry of these tables
contains the following items of information: the symbol itself, in BCD;
two addresses used by IVY for searching purposes; and a control word,
containing a count of the items of information in the block, a flag in-
dicating what type of information is loaded, and the base address of the
block minus one. Once constructed, the symbol table is always in core,
available to both IVY and the problem program. With the exercise of due
caution, the problem program may consult and alter the symbol table at
will, using conventions described in Appendix 1.

*
Paragraphs marked with “*” and single-spaced, while informative, are
not essential to the understanding of the IVY system, and can be
skipped if desired.

-18-

The Order of Definition of Symbols. Since IVY is a one-pass pro-

gram, all symbols must be defined before they may appear in the defini-

tion of another symbol and before they are referred to by code. Symbols

can be defined on “S”, “D”, and “R” cards, described on pages 2G,15,and 61.

Furthermore, all symbols must be defined before ~code is converted,

regardless of whether the code refers to the symbols or not. Since the

symbol table is loaded in core immediately preceding converted code, the

symbol table must be full to avoid destroying code with new entries.

All symbols must be defined on “S”, “D”, or “R” cards except for

symbols consisting of a single alphabetic character, other than the spe-

cial symbols “A”, “X”, and “L” (pages 28-29). Single-character symbols

never need be defined since IVY always contains the 26-entry table for

the single alphabetic characters. Note that by a symbol being defined

is meant that the symbol must be entered in the table, although it need

not have been assigned an address, value, or length unless the conver-

sion of code or definition of another symbol requires such assignment.

(For detailed instructions on defining and/or assigning values to sym-

bols, see pages 45-61.)

*
The Role of the Control Word in Error Detection. By examining

the flag of the control word for a symbol, mentioned above, page 18,
XVY detects such obvious errors as attempting to perform arithmetic-on
code and remark blocks and attempting to transfer to data or remark
blocks from the problem program. If the entire control word is zero,
meaning a symbol has been defined but the block has not been loaded
such errors as referring to the block in arithmetic instructions an~

*
Detailed discussions of the symbol table and control word formats, of
interest only to the more-than-casual coder, will be found in Appendix 1
and in the various appendices relating to particular machines for which
IVY is available.

-19-

attempting to define another symbol in terms of this one can be dis-
covered. References to undefined symbols are, of course, easily de-
tected because of the absence of the symbol from the symbol table.
Ordinarily these errors are not of such magnitude as to inhibit com-
pilation of the problem program, and whenever this is true, execution
is allowed to proceed to that point where the code is first affected
by such an error.

-20-

cHAPrER 2

CODING FORMS AND TYPES OF CARDS

Coding Forms. There are two forms available for IVY programming. The

first form is divided into one column for tie control punch (described later

in this chapter) and 71 columns for the entry of information, with the

last eight columns left for program identification. The contents of the

program identification columns are not available to the program. The

second form is similar to the first, and in addition it contains guide

lines in the margins for drawing arrows, to mark flow of control, thus

Wing the coding sheet, in essence, a flow chart. These mOWS ~e ~t

punched on the cards, but are merely intended as a convenience to aid

the programmer in reading

follow and understand the

lessen, if not eliminate,

his code, and in making it

flow of the program. This

the need for flow charts.

for

the

the

Control Punches. The first column of IVY cards

easier for others to

feature should also

is always reserved

the control punch. The function of the control punch is to des+gnate

type of information found on the cards, and to give instructions to

compiler, or both. A card containing a blank in column 1 is assumed

-21-

.

to be a continuation of the previous card and to contain the same type

of information. Certain types of cards may not have a continuation card

following them; this is noted, when applicable, in the following descrip-

tion of the particular card types. The continuation of “R”~ “K”) or “T”

cards if any, must contain a blank in column 1} as explained below.

Identification Card. An “identificationcard” must precede any

code which produces off-line output for printing, punching, or plotting

on the SC-4020. For consistency this card should precede all IVY decks.

(This card is the standard ID for the m 7090, as adopted bY the ~s

Alamos Scientific Laboratory and described in a buUetin distributed to

7090 users dated April 14, 1961.) The function of this card is to iden-

tify any off-line output (listings, cards, microfilm, etc.) with the pro-

grammer’s name and telephone nwber~ so that it can easi- be seParated

from other programmers! output and delivered to the individual concerned.

To aid the operator in logging, the contents of this card are printed

on-line.

The format of the Identification Card is as follows:

COLUMN

1

2

3

4

5-7

8-26

27-30

*

*

*

*

PUNCH

(Produces BCD print ID)

or blank (* if BCD off-l=i-nepunching is done)

or blank (* if binary off-ldme

or blank (* if 4020 tape is to

punching is done)

be prepared)

maximum time in minutes

programmer’s name and phone number

coder’s number

-22-

COLUMN (continued)

31-33

34-36

37-B

39

40

42

44

45

46

47-48

73-80

MCP control cards.

name of code

group for which

category number

problem is done

2 (for IVY codes)

G if debugging, H if production

machine used (Iocal conventions are used)

o

0

0

number of tapes
for this cod@

used exclusively by and

programmers name

These cards may be

on the 7030 if IVY is run under MCP. In this

required only in decks run

case these cards must pre-

cede any deck run on the 7030. These cards may be included in q IVY

deck on ~ machine, however, and if not needed, will be ignored.

The purpose of these cards, all of which have a “B” in column 1, is

to define input-output units in a symbolic manner; MCP then assigns abso-

lute units to these symbolic numbers well in advance of the time the pro-

grem is run, so that tapes can be mounted properly, etc. These cards

*
The systems tape, standard print output tape, etc., are not included in
this count.

-23=

must be the first ones present in any IVY deck which is run on the 7030;

and, as mentioned above, can be removed for 7090 runs if desired.

The various “B” c=ds required are as follows:

A. Job Card.

12 910
B 1$J B, IDENTIFICATION

Any identification desired, e.g., name and phone number, can be—
a~er the operation “J@B.”-

B. Type-of-Problem Card.
112 9110

B I rv-YG@,

This card merely specifies
and will assemble and go.

Iocal conventions must be observed.

that the problem coming up is in IVY

placed

language

c. Input-Output Definition Cards. One of these cards must be entered

for each tape unit the programmer uses outside the system, i.e., for
tape units other than the standard input-output tapes used by IVY.
The format for these cards is as follows:

112 9]10 &169

B II~DNAMEI

where:
1.

I~D,T=,EXIT,CHANNEL, NUMBER,M4DE,DENSlTY,DIS+SITI@~~

“I~DNAME” represents any symbol of from one to six alphabetic

characters, used by MCP to

ment stated on the card.

2.

3*

in length

signed by

“I@D,” “TAPE,”

be synonymous with the input-output

and “EXIT” occur as illustrated.

require-

“CHANNEL” is any symbol from one to six alphabetic characters

specifying some channel, the absolute address of which is as-

MCP. Different symbols wi12 be assigned different channel

addresses. If the “CHANNEL” field is null, it is assumed that the channel

-24-

assignments of tape units are irrelevant, and MCP assigns any free tape

unit regardless of channel.

4. “NUMBER” iS the IVY tape number in hexadecimal (lt2~3~...~9~A~

B,C,D,E,F). See page 120.

5. “M@DE” may specify either “@DD,” for odd parity, or “ECC,” for

odd parity @US ECC

6. “DENSITY”

density. This must

tape in the calling

checking.

is either “HD,” for high density, or’’LD,”for low

agree with the density, if any, requested for the

sequence to “$TP,” the tape program. See page 122.

7. “DISP@@N”

any case;“ “CSAVE,” for

“ISAVE,” for “save tape

“save tape reels in any

may be “NSAVE,” for “do not save tape reels

“save tape reels only if job is complete;”

reels only if job is incomplete; or “SAVE,”

case.”

in

for

8. “REF” is an octal nunber corresponding to the hexadecimal tape

number in 4 above.

D. Reel Cards. A reel card must immediately follow the “I@D” card to
which it refers, or another reel card referring to the same unit
and channel. The format is:

1 2
B REEL, R1,R2,”””,etc.

where
10 “REEL” is the pseudo-operation defining this type of card.

2. “Ri“ represents a symbol up to eight characters in length; the

first three are not part of the reel identification, but specify whether

the tape is labeled or not and whether the tape is protected (ring out)

or unprotected. The remaining 5 characters agree with the identification

shown on the physical reel. Thus Ri may be:

-23-

If

be

Pm Xxxxx

PUL xxxw

NUlxxxxx

an’’R~’is null, a

entered for each

protected, labelled

protected, unlabeled

unprotected, labelled

labelled, unprotected tape is assumed. An “Ri” must

reel of the tape desired, even if only one reel is

used. All reels are labelled automaticallyby MCP.

the reader is referred to the MCP manual.

In general the programmer need not worry about

For further details,

punching the MCP

control cards, since the 7030 run request sheet is used by the operators

to punch the necessary “B” cards. These cards are placed in front of the

deck, which is then run. Iocal conventions are important in the use of

these cards and should be studied by the programmer interested in running

on the 7030.

Start Card. A “start card” must precede eve~ IVY code, behind any

“*” or “B” cards. This card performs the following functions:

1. Erases the symbol table of the previous code, if any, and ini-

tializes IVY for a

loading to initial

2. Sets the

start card and all

new code in such ways as setting base addresses for

values, etc.

print trigger on, which causes the contents of the

cards following it to be printed on-line, until a

“print suppress” card is encountered (see page 30).

3. Defines the maximum number of formulas in one formula set, num-

bers of independent store-address expressions, references within formulas,

index registers, and numbered remark symbols used by the code.

-26-

The format of the Start Card is as follows:

Col. 1 CO1. 2-72

s I (N,)JA(N2),L(N3),x(N&),s~#L, (N5),s~~PL2(N~)>*.*
Here’!Ni’’represents a decimal number which cannot be symbolized,

and ’~YMB#L,’’represents any legal symbol (from one ta six alphabetic char-
.1.

acters except the symbols A, L, or

by a continuation card.

The fields on this card will

where necessary, to indicate where

x). The “S” card cannot be followed

now be explained, with page references,

further discussion of the concepts in-

troduced by consideration of this card may be found:

1. (Nl): N, is the maximum number of formulas which will appear

in any formula set of the IVY code introduced by the “S” card. Briefly,— —

IVY codes are always &ivided into one or more subsets called formula

sets, and each formula set contains one or more subdivisions called for-

mulas. Within a formula set, the code can flow at will among the formu-

las, but direct branching between a formula in one formula set and a for-

mula in another set is not allowed. Formula sets are to be thought of

as almost independent packages of a code, to be entered from another

formula set only by branching to the start of the set, and not to one of

its formulas. (For further discussion, see page 114). Thus, if Ml is

the number of formulas in the first formula set, M2 in the second set,

.... ~ in the nth set, then N, = max (Ml, M2,‘*”,%). This entry

causes a table to be constructed,(N1 + 25)words in length, to aid the

compiler in assigning addresses to branches between formulas. The

minimum value N, can have is O.

-27-

2. A(N2): The symbol “A” is always reserved for the “store address”

symbol, even if no “store address” expressions are used in a code. If no

“store address” expressions are used, the entry A(0) must still be present

on the “S” card. If, however, the coder wishes to use “store address” ex-

pressions (whichareusually helpful when working with multi-dimensional

arrays), “N2” specifies the maximum number of independent “store address”

expressions in any formula of the program. (For further enlightenment

see pages T~-’78.) This entry causes a table, N2 words in length, to be

constructed for the use of the compiler in setting up “store addxess” in-

structions in machine language.

39 L(N3): The symbol “L” is always reserved for internal branch

references (Ll, L2,..o) within formulas. If no internal branch references

are used, N =
3

O,and L(0) must occur on the “S” card. N3 is the maximum

number of internal references within formulas, i.e.y if J, i$ the number

of references in the first

then N = ma (Jly J2y0..~
3

pages 97-102.) This entry

strutted, to aid

to “L” entries.

4. X(N4):

formula, J2 in the second,..., JM in the Mthy

JM). (For discussion of “L” entries see

causes a table(N i-2~)in length to be con-
3

the compiler in assigning addresses to

N3 canbe at most 51Z.

The symbol “X” is always reserved for

branches referring

index registers.

,IN4!1 specifies the number of index registers used in the program. The

first N4 consecutive index registers, Xl, X2,...j XN4 must be used, ~

any combination of N4 different registers. Regardless of the machine

used, IVY index registers always modi~ by addition, or appear to do so;

-28-

furthermore, IVY index registers are always positive, and even on Stretch

(except inlonghand coding) must nottske on negative values. This entry

causes a table N4 in len@h to be constructed to aid the compiler in simu-

lating extra index registers, if N4 happens to be larger than the n~ber

of index registers available on the particular computer, and a second

table, also N4 in length, for aid in the computation of index branches.

N4 must be at least 1 but may be no larger than 256. For more discussion

on index registers see pages 89-93.

59 SYMB@L1(N5): The remaining entries on the “S” card are option-

al (the first four listed above are mandatory) and specify numbered sym-

bols which may be assigned only to remark blocks or calling sequence

blocks. The symbol specified may be any symbol consisting of from one

to six alphabetic characters except the symbols A, X, and L, which, as

noted above, are always reserved for special.purposes. “N “
5

is the num-

ber of symbols which will begin with the alphabetic characters and end

with one of the numbers 1, 2,..., Ns: SYMB@Ll, SYMB@2,..., SYl@LN5.

Each of the blocks corresponding to these numbered symbols must be

loaded separately on “R” or “K” cards (see below). A group of numbered

symbols beginning with the same alphabetic symbol must all address the

same type of information; that is, the symbols of a numbered block R,

namely RI, R2,..., RN,must all address either remarks or calling sequence—

information,but not both. The number of numbered symbols allowed is

obviously restricted to the remaining columns of the “S” card, since no

continuation is allowed.

-29-

The discussion of the “S” card is now complete.

emphasized that the “S” card must not be followed by a

i.e., another “S” card or a card with the first column

sary information must be included on the one “S” card.

also note that much of the information discussed above

Again it must be

continuation card,

blank. All neces-

The reader should

will be discussed

in detail later. As a man once remarked when presented with the IVY sys-

tem, “The lS1 card is supposed to

will probably be the last one you

lesson here is clear: although an

be the first card in your code, but it

write down on the coding sheet.” The

IVY deck must be ordered in a specific

manner, quite often the order of coding will not correspond to the order

of the deck, or to the order of treatment of topics in this manual.—

Print cards. These cards, the purpose of which is to turn the

print trigger on or off, may occur anywhere in

print trigger is on, all.cards willbe printed

thus allowing’the coder to obtain a listing of

gram. A card with “P” in column 1, and column

an IVY code. If the

until it is turned off,

all or part of this pro-

2 blank, turns the print

trigger on; “S” in column 2 (for “suppress”) turns the trigger off. Re-

call, as remarked on page 26, that an “S” card also turns the print trig-

ger on. Thus, once a listing is obtained, on subsequent runs a “PS”

card should follow the “S” card to suppress any unnecessary listing.

The listing wiU appear off-line unless key 35 is down (7090) or binary

key 63 is down (7030).

Comment cards.

whatsoever in an IVY

The “comment cards,” which may occur anywhere

deck, are announced by a “C” punch in column 1.

-30-

These cards are ignored by IVY for assembly purposes, except that their

contents will be printed if the print trigger is on. Any printable com-

ment may be punched on a “C” card; generally, of course, these comments

are of an informational nature, describing the subsequent code for the

benefit of anyone (including the coder) who might want to read it. C1!11

cards may be followed by any number of continuation cards with a “’C”or

“blank” in column 1.

Definition cards. After the “B,” “*,” and “S” cards the “defini-

tion cards” must occur. These cards, which have a “D” punch in column 1,

are used to define symbols for data blocksj psrsmeters~ and formula sets.

Formula names, however, should not be defined on “D” cards; these symbols

are defined by their occurrence on “I” or “L” cards, described in Chap-

ters 4 and 5 and in Appendices 2 and 3. Recall the distinction between

formulas and forrm,ilasets, discussed previously on page28. A detailed

description of the allowed formats on “D” cards is given in Chapter 3,

pages 43-57 . “D” cards may be followed by any number of continuation

cards ~th a “D” or “bl.a&” in column 10

Remark cards. “Remark cards” provide a means for entering BCD in-

formation into core for printing comments on a listing, punching comments

on cards, or for use as format statements for printing. Ordinarily re-

mark cards should occur next after “D” cards in an IVY deck. Symbols may

be defined on remark cards, remark blocks may be loaded, or a block of

fixed length maybe set up so that a remark may be constructed in it

later using the character manipulation program described in Chapter 6,

-31-

pages 154.156 Remark blocks may be named tith numbered symbols entered

on the “S” card (page 29) or with ordinary alphabetic symbols which

have not been previously defined otherwise. A description of the for-

mat of remark cards occurs in Chapter 3) pages 61-64 ● Remarks for use

as format statements are described in Chapter 6, pages 132-I&5. The first

card of a remark must have an “R” punch in column 1, because it is on

this card that the symbol is defined; continuation cards, if any, are

allowed, and must have a “blank” in column 1.

Calling sequence cards. “Calling sequence cards” are used for

entering calling sequence information into core; calling sequence infor-

mation may also be entered directly on instruction cards. However, the

option of using calling sequence cards is allowed because of the flexi-

bility of such a system: like remarks,cd.ling sequence blocks can be

defined without being loaded, so that values for them can be computed

later in the code (see pages 182-184) for examples. Variable celling se.

quences, or calling sequences whose length depends on a parameter, may

be defined; and a previously defined and loaded calling sequence can

easily be altered. None of these operations is possible with calling

sequences which occur on instruction cards. Discussions of the usage

of calling sequences occur throughout this manual, e.g., Chapter 5,

pageslo~-llo,~d Chapter 8, pages lT6-l&. Calling sequences for Parti-

cular IVY subroutines are discussed in Chapter 6. The actual format of

calling sequence cards is described in Chapter 3, pages 64-67. As

with remark cards, continuations of calling sequence cards g contain

-32-

“bI@” in column 1; the first

appears, must have a “K” punch

card, on which the symbol of the block

in column 1. Unlike remark cards, however,

the symbol on a “K” card must have

into the symbol table; that is, it

by an entry on the “S” card, ~ an

been previously defined, i.e., entered

must be either a numbered symbol defined

alphabetic symbol defined by its appear-

ance on a “D” card. (See Chapter 3, pages 47-48.)

Instructions to operator card. Cards of this type contain an “~”

column 1 and may not be followed by continuation cards. The “~” card,

in

in

columns 1 to 72, may contain any comment, interpreted

the operator. When an “~” card is encountered by the

causes the following to take place:

as an instruction to

loading program, it

1. The
ter
the

2. The

contents of the”d” card are printed on-line (using the prin-
on the IBM 7090 &d machines without a typewriter, using
typewriter on machines which have one attached, such as the
7030)●

machine then stops or waits, and a gong is sounded on ma-
chines which have one attached.

3. The operator presumably reads the instructions, carries them
out, and presses an appropriate button (“start” on the 7090-
type machines, “console signal” on the 7030), and IVY regains
control and proceeds.

If the coder’s program currently has control, the same functions may

be performed by using the IVY subroutine’’$@P’)describedin Chapter 6,

pages 151-152.

Tape control cad. The purpose of the “tape control card” is to allow

the programmer to read or write information on a binary, high- orlow-density

tape under control of the loading program. The same thing may also be done

internally by using the IVY subroutine’@P,’’describedin Chapter 6, pages

121-126.

-33-

A tape control card has a “T”

if any, must have a “blank” in

sequence to @P, consisting of

punch in column 1, and continuation cards,

column 1. The “T” card contains a calling

various items of information separated by

colons. These items are as follows (“H” is a hexadecimal digit, 1 ~H~C

on the 7090, 1 ~ H~F on the 7030):

$HDH

@IJ)H

$RWH

@!3?H

@LH

@?TH

$BBH,p

$BFH,p

@BH, P

@FH,P

@DH,AD(@A)
+P:AE(#w)

@RH,AD(@A)
+P:AE(@W)

@DH,AD(@A)+p

MEANING

set tape “H” to high density

set tape “H” to low density

rewind tape “H”

write end-of-file

rewind and unload

write end-of-tape

on tape “H”

tape’k”

record, tape “H”

backspace tape “H” through
“P” records

backspace tape “H” through
“P” files

forward space tape “H” through
“P” records

forward space tape “H” through
“P” files

read from tape “H” the record with
ID= C(AD(@A)+P) into blockAE

write a record on tape “H” with
ID=C(AD(~WA)+P from block AE

last entry only: compare ID of
current record on tape “H” with
contents of AD($WA)+P. “$CSI”
is set to O if not equal, 1 if
equal.

-3J+-

In all of the above, “P” stands for “parameter algebra,” which is

explained at the beginning of Chapter 3. Other notation is explained in

Chapter 5, pages 103-llQ and the calling sequence for’)#N?’isfully dis-

cussed in Chapter 6, pages 122-125. Page120 contains a table showing cor-

respondence between the tape number “H” as used above and tape and channel

numbers on the 7090 and 7030. Below is an example of a “T” card and its

continuation,whichwrites two blocks on tape, and reads in a third from

another tape:

T@W3:@WR3,@@A)+l :SN(@):#WR3,AX($WA)+3:ST(@) :$RW3:

l#RW2:@B2,4:#RD2,FNP(@A)WE:m(#W):

Assembly card. The “assembly card,” which has an “A” punch in

column 1, and for which no continuations are permitted, is required to

be present in an IVY program. Once this card is encountered it is

assumed that all symbols (except those for formulas) have been defined,

on “D,”“S,” and “R” cards. The purpose of the “A” card is to cause

the instruction and/or longhand cards which follow it to be compressed

and written in a specified file of a specified tape, or to read in and

assemble instruction and/or longhand cards which have been previously

written by an “A” card. Note that the “A” card differs quite markedly

from the “T” card: The “T” card is used for writing or reading data;

the “A” card is used to control assembly, and writes only unconverted

instructions, and when reading, converts simultaneously into machine

language. The use of “T” cards is optional, whereas “A” cards sre re-

- in order for the assemblY to Proceed ProPerlY*

—

The two formats

for “A” cards are as follows:

1. preceding code: The card

Al@RN,F

causes the instructions on cards following to be written
on tape “N,” where “N” is a hexadecimal digit (1 ~ N < C
or F; see “T” cards), in the file number specified byq’F,”
a decimal numbero If N = O, a special systems tape is
used, equivalent to N = A.

2. following code: The card

Al@lDN,F

causes the unconverted code in file “F” of tape “N” to
be read into core and converted to machine language.

An “A” card of type “l” will write instructions on tape Until

another “A” card or an “X” card (see below, pages 39-40) is encountered.

The smallest unit of code which may be written using “A” cards is a

formula set. In general it is best to write a long code in as many

files as possible, one formula set per file, since, if several files

contain part of the code which have been debugged, it is not necessary

to read in the cards again for these particular files. One need only re-

write and re-load the undebugged portions of the code; the rest may be

read from tape using Al#RD cards.

read and assembled in its entirety

a portion of the code which occurs

A completely debugged

from tape. Noke that

in a certain file, it

code may be

in re-writing

cannot be re-

written in the same file (unless it occurs in the last file on tape)

without destroying some subsequent information; it must be rewritten

in a file beyond the last previously written file. Tapes mitten under

-36-

the control of

using the same

the “A” card may not be used interchangeably smong machines

types of tape units (e.g., the 7090 and 7030) since they

contain partially assembled code. Files of a tape may also be read and

assembled under program control, using the IVY subroutine “~, “ de.

scribed in Cha~ter 6, ~ages 119-120.

Instruction cards. “Instruction cards,” which have an “I” in

column 1 and may be followed by any number of continuation cards with “I”

or “blank” in column 1, are used to load IVY algebraic code. The format

of these cards, and the IVY algebraic language itself, are discussed in

Chapters 4 and 5. “I” cards must be precededby ~’A”cards, writing U~ts

of the code containing one or more formula sets on tape, and may be fol-

lowed by other “A” cards or “X” cards, as

All symbols for data, remarks, etc., must

the first instruction block is assembled,

described below, pages 119-120.

have been defined by the time

regardless of whether or not

the block in question refers

loaded into core immediately

been completed, subsequently

to these symbols, since instructions are

above the symbol table; if the table has not

defined symbols will destroy the first in-

structions of the code. Blocks of “I” cards must not contain “D,” “R,”

ttIt“K, T,“ “@,” or “E” cards; in other words, all cards containing infor-

mation not pertinent to instructions and their assembly must have been

loaded before any instruction blocks, or must be loaded after the first

“x” card.

Imghand cards. These cards, which have an “L” punch in column 1

and may be followed by any number of continuation cards with “L” or

-37-

“blank” in column 1, are used for the entry of longhand instructions for

a particular machine, as opposed to the “I” cards which enter the alge-

braic instructions valid on all machines. The formats of “L” cards are

described in the appendices appropriate to the machines under considera-

tion.

Binary deck cards. These cards, identified by an “F” in cOIUmn

1, are used to load a relocatable column binary deck. The relocatable

cards must, of course, contain instructions in the set of the particular

machine being used, and must be in the ProPer relocatable format for

that machine. The chief purpose of the “F” card is to allow a programmer

to load a previously coded subroutine, not a complete codes The format

of the “F: card is as follows:

Fl:J@B,M:#&L

“AD” is a symbol for the formula set representedby the
binary deck; “M” is the n~f~rds (if any) reserved
for data before the subroutine> in decimal; ~d “L” is the
number of words (if any) reserved for data after the sub-
routine, in decimal. The purpose of the latter two entries
is to take care that space is allowed for data blocks used
by the subroutine for which no cards are loaded, such as,
for instance, blocks definedby use of “BSS” or %ES” in
the SAP and FAP systems. This is not necessary ordinarily
on the 7050, since space for blocks defined by “DR*’or
“DRZ” is reserved by the use of special conventions on
the binary cards.

Continuation cards are obviously not appropriate for “F”

cards: IVY assumes that the cards following the “F” card are relocat-

able binary cards with 7 and 9 punches in column 1, and that the Ist

non-relocatable card following is an IVY card with a non-blank punch

in column 1.

-9-

The “F” card has been included primarily as a feature intended to

simplifi the transition from other coding systems to IVY; thus, subrou-

tines available in relocatable form can be loaded in this manner until

such time as they become available in IVY language. In no sense is IVY

to be considered merely a relocatable loader: IVY recognizes only relo-

catable cards, and none of the other types of the large class of cards

handled by the FORTRAN BSS loader.

It is the programmer’s responsibility, then, to set up calling

sequences to these relocatable routines correctly in the IVY language.

Normally such subroutines should be self-contained, i.e., they should

not refer to other subroutines, and should carry with them their own data

and erasable blocks. If this is not done, then the programmer must exer-

cise extreme care in the use of the subroutine. F$RTRAN, which can be

used to produce relocatable routines which refer to outside data blocks o

and to other subroutines, stores data backwards in memory, at the time

of this writing, while IVY stores data forwards. This difference should

always be borne in mind when using a routine produced by F@RTRAN.

Execute card. The “execute card,” with an “X” punch in column 1,

is the IVY transition card; its detection causes IVY to transfer control

to the programmer’s code. Its format is as follows:

xpD

where “AD” is the symbol for a formula set which must have
been converted by means of an “A” card (or the routine’~”)
before the “X” card is encountered. If columns 2-72 of the
“X” card are blank, it is assumed that the programmer has
entered the loading progrsm “@n” from his code, and control

-39-

is returned to the first instruction following the pro-
gram’s “@D” calling sequence. An “X” card with columns
2-72 blank is illegal if the programmer has not entered
‘$ID”from his code. Normally,’~~’is entered to read
data from “E” cards, described below.

Enter data cards. These cards, with an “E” punch in column 1,

may be followed by any number of continuation cards marked by “E” or

“blank” in column 1, and are used to enter data in blocks which have

been previously defined on “D” cards. Normally “E” cards occur after

the program’s first “X” card,which transfers control to a specified for-

mula set;’’@D”is then entered to read the “E” cards, which must be

followed by an “X” card with blanks in columns 2-72 to return control to

the ’~LD’’callingsequence. The format for “E” cards is described in

Chapter 3, pages 57-59.

*a?!2?E4” It has been the intention of this chapter to describe
. the various types of cards used in an IVY deck, and as much as possible

the order of discussion of these cards has been the order of an IVY deck
at loading time. When possible, the card format has been described; in
many cases, however, the reader has been referred ahead to those por-
tions of the manual which describe the format of the card in question
in more detail than can be attempted this early. In setting up an IVY
deck for assembly, the programmer should keep one idea paramount: that
IVY is a load-and-go, one pass system, meaning that every card is ex-
amined once and only once. Therefore, the order of loading is somewhat
restricted in that symbols must be defined prior to their occurrence in
code and calling sequences, making it necessary to place the “S,” “D,”
and “R” cards in that order at the beginning of the deck. All symbols
must be defined, i.e., entered in the symbol table, before any “K,” “I,”
“L,“ or “F” cards occur, since the information loaded from these cards
occupies space immediately above the symbol table, and any subsequent
attempts to define symbols (treated and detected as errors) would des-
troy part of the information loaded by these cards.

++Becauseof the distinctionbetween formu~ sets ~d formu~s,
as sets and subsets of a program, formula set names must be defined on
“D” cards, whereas formula names are defined by their appearance on “I”or
“L” cards and should not be defined on “D” cards. Thus, for instance,

-40-

subroutines referred to by a number of formula sets should be defined
as formula sets, since formulas can refer only to formula sets or to
other formulas within the same set, All “I” or “L” cards must be wit.
ten on tape and assembled ~~ “A” cards, the usual procedure being
to write each formula set in a separate file. This makes it possible
to avoid reloading the entire deck for a second assembly, when none,
or only a few, of the formula sets contain errors.

*Finally, after assembly of one or more formula sets, the “X”
card transfers control to one of these sets and execution of the coder’s
program begins. At any time the program can re-enter’$ID”to load new
data from “E” cards and regain control from an “X” card with columns
2-72 bh~. The program also may use other IVY subroutines, such as
‘#AP’%oassemble a new formula set, and various input-output routines
for printing, punching, and the manipulation of tapes.

+Yl!ableI gives a summary of card types for quick reference, giv-
ing page numbers of descriptions and other useful information.

-41-

TABLE I

Table of Card Types

FORMAT ON CONTINUATION
COL. 1 PAGES AIJOJED? PURPOSE

*

B

s

P

D

R

K

$

T

A

I

L

F

x

E

c

22-23 No

23-26 NO

26-30 NO

30 NO

43-57 Yes “D” or “blank”

61-64 Yes “blank” only

6&67 Yes “blank” only

33 NO

33-35 Yes ‘blank” only

35-37 NO

68-117 Yes “I” or “blank”

Appendices 2,3 Yes “L” or “blank”

38-39 NO

39-40 NO

57-59 Yes “E” or “blank”

30-31 Yes “C” or “blank”

Identification of off-line output

Assignment of 1/0 on 7030

Start, define essential quantities

Set print trigger on or off

Define and/or load symbols

Define and/or load remarks

Define and/or load calllng se-
quence blocks

Instructions to operator

Tape manipulation under loader
control

Write or read and assemble in-
structions

Load algebraic instructions

Load longhand instructions

bad relocatable binary deck

Transfer control to program

Load data

Comment

-42-

CHAPTER 3

DEFINITION AND LQADING OF DATA, REMMUC3, AND

CAIUNG SEQUENCE BLOCKS

Definition and loading of parameters. A parameter, as referred to

throughout this manual, is defined as a fixed point integer, the value of

which remains constant throughout an assembly, and which is used to define

such things as the dimensions of a block, conditions on whether assembly

or loading of a block is to take place, and so on. The value of a param-

eter may, of course, vary from one assembly to another, but once defined

for a given assembly, it must remain constant throughout the assembly.

Since the notion of a parsmeter is the foundation of the whole IVY system,

and the algebra of parameters is a cornerstone, the definition of param-

eters, followed by a discussion of parameter algebra, sh~ occupy us

first in this chapter.

Since, as a rule, the entire assembly depends on the values of

parmeters, these quantities should be defined on the first “D” card or

cards after the “S” card. In different assemblies these “parameter

cards” can be changed for another set in order to change the dimensions

of various arrays, change some of the conditional assembly statements,

-43-

etc. Some simple parameter definitions are illustrated below:

DIGE= 2, AX= 15, BS(2) = 1,3,TH= 6, FINr(Bs2) = 5, 6, 12

The first two symbols are defined as single parameters, the numbers 2

and 15. BS is defined as two parameters 1 and 3. When any block,

parameter or not, is defined as being a vector or array N in length, N

numbers must follow to load the block completely. More about this point

later. TH is then singly defined, and finally FINT is defined as having

length BS2, which is 3, and three numbers are loaded. Note that in the

case of the parameters and data, the n~ element of an array AD is ad-

dressed by writing ADn, where n must be a number and cannot be symbol-

ized. However, the first element of a block may be addressed by using

the symbol with no number, so that, using the above example, one may call

on the number 2 by writing GE instead of GE1, though the latter is also

allowed. Similarly the symbol BS alone would address the number 1, the

symbol FINT alone would address the number 5.

Dimensions of multi-dimensional blocks can be symbolized by param-

eters defined in the above manner, or may be defined by fixed point num-

bers when dimensions never vary, or by parameter algebra, discussed be-

low. New parameters may also be defined in terms of previous parameters,

numbers, or parameter algebra involving Previously defined par~eters.

Examples of this appear in the next section.

Parameter algebra. Parameter algebra is defined as fixed point

integer algebra free of parentheses. The operations in this algebra, as

-44-

in IVY “machine algebra” discussed in Chapter 4, take place in sequence

from left to right, unmodified by parentheses. Examples of this alge-

bra occur below, after a discussion of allowed operands and operations

for this algebra.

The allowed operands in parameter algebra are:

1. Symbols which have been previously defined as fixed point in-

teger parameters, e.g., GE, AX, and TH in the above example.

2. Symbols with a number, meaning the n~ element of a previously

defined fixed point integer parameter, e.g., BS2, FINI’3in the above

example.

3* Literals, i.e., fixed point integers not symbolized, e.g., 2,

251, 3, 17, 23.

The allowed operations in parameter algebra are:

+

*

/

+$

-$
*$

●@

●SV

add

subtract

multiply

divide and truncate result to integer

take absolute value of the preceding

take negative absolute value of the preceding

change sign of preceding

if result of preceding calculation is
non-zero, set to 1

if result of preceding calculation is
zero, set to 1; otherwise, set to zero.

Some examples of parameter algebra, involving the parameters

-45-

defined in the example in the previous section, are as follows:

EXAMPLE

TH+3

Ax + GE*BS2

Ax/TH+2

Ax+Bs2/TH

-2WH+AX. @

-2WH-I-AX.@

FINT3*FINT-AX*$

TH-AX+~

RESULT

9

51 (multiplicationbyBS2 times AC%E:
operations from left to right)

4 (result of division is 2)

3

1

0

-45

9

Examples of definition of new parameters using parameter algebra involv-

ing previously defined parameters:

D@W=GE-AX*BS2,N!l?T=AMP+3#, PRT(GE+l) = AW’IH, O, FINT2-BS2/GEj

Thus we note that the value of a parameter, as well as the dimensions of

a block containing more than one parameter, can be defined by using

parameter algebra involving previously defined parameters. Other ex-

smples of parameter algebra wilJ occur in examples following treatment

of the definition and loading of data and remark blocks.

The definition of symbols and loading of data. As remarked in

Chapter 2, the definition of symbols (simply by their occurrence) and

the loading of data may both be accomplished on “D” cards. One example

of both symbol definition and loading is the case of parameters dis-

cussed in the previous section. We now come to the section covering

-46-

the definition of other symbols without any loading being associated, as

well as the definition of data blocks whose length may depend on pre-

viously defined parameters, and finally, the loading of these data blocks,

which may occur from “D” or “E” cards. Data blocks may, of course, be

left empty, to be filled by results calculated in the programmer’s code.

Entries on “D” and “E” cards are separated by corns. Since con-

tinuation cards are allowed for both “D” and “E” cards, an entry may be

continued from one card to the next; however, certain rules must be ob-

served in this continuation:

1. Symbols and literals (i.e., numbers) cannot be continued
from one card to the next, but must be complete on one
card.

2. Entries within parentheses may not be continued from one
card to the next, but must be complete on one card, in-
cluding the right parenthesis.

For the moment, these two simple rules win suffice. Note that param-

eter algebra may be continued from one card to the next, providing that

symbols and literals are not split, and that the algebra is not within

parentheses.

Symbol definition. A symboltiich occurs by itself between commas

on a “D” card is placed in the symbol table, and thus defined. No address

or other information is attached to the symbol table entry. It is in

this manner that the names of formula sets and non-numbered symbols for

calling sequence blocks must be defined. Example:

DIAGM, TDMT, L@IC, FSA,FSB, FSC,

As was remarked on page19, symbols consisting of a single

-47-

alphabetic character need not be defined in this manner, since IVY

always contains a table of the single character symbols.

Array definition. Arrays are defined on a “D” card by the ap-

pearance between commas of the symbol for the array followed by one or

more (up to fifteen) parsmeter algebra expressions for the dimensions,

enclosed in parentheses and separated by commas. No data are loaded for

a block defined in this manner; however, an address is assigned and

space is set aside for the array, which is now tagged as “data” in the

symbol table. Example (using parameters defined in earlier exsmples in

this chapter):

DIAVECT(N’IT),BMUUI(3,GE+I, ZYTH), CVEC(5), D~L(2,5,GE),

In this example we note that the dimensions of an array can be defined

by symbols, Iiterals, or parameter algebra. The advantage of being able

to symbolize the dimensions of an array is that by defining parameters

properly, an array can always be assembled with the exact dimensions

needed in a particular run. FORTRAN and similar systems do not allow

array dimensions to be symbolized, and hence the programmer must allow

space for the maximum size of an array, sometimes leading to storage

problems, since usually all arrays do not simultaneously assume maximum

size: one array may be smaller when another is larger. In IVY no such

problem exists. By symbolizing dimensions, array sizes can be tailored

to fit the particular input being used. In examining the above example,

and looking back in the chapter to the examples on parameters, we see

that AVECT is a vector 36 numbers long, BMULT is a 3 X 3 X 12 array,

-48-

CVEC is a vector of length 5, IEvSULis an array 2 X 5 X 2 long.

In the event that one or more of the expressions for the dimen-

sions of an array is zero, the array has length zero. A block legally

defined in this manner is called a suppressed block. A block maybe

suppressed, for instance, when it is not being used at all in a particu-

lar assembly. When this is done, no error indication is given, and the

assembly proceeds, replacing references to the block with references to

the location of zero, and suppressing any “store” references to the

block. The assumption is that since the block is suppressed, the portion

of the code containing references to it will not be executed anyhow, or

that replacement of the symbol by the address of zero is acceptable. Of

course,.in subsequent runs the coder may re-define the parameters used

in computing dimensions of the block so that it is no longer suppressed.

If one or more of the expressions for the dimensions of an array

is negative, an error indication is given, since obviously an array can-

not have negative length or a negative dimension. Any references to

such a data block in the code will be replaced by transfers which return

control to IVY.

Ioading of data on “D” cards. In addition to defining blocks as

described above, loading may also be specified on “D” cards, by following

the symbol and its dimensions, if any, with an equal sign and a number of

expressions which load the block completely. These expressions are sep-

arated by commas. In the section on parameters, we have seen a number of

examples of this, for instance:

-49-

DIGE=2, AX=15, BS(2) = 1,3, TH=6, FINT(BS2)=5, 6, 12

Here the symbols are defined by their occurrence and then loaded tith the

number or numbers to the right of the equal sign, in this case fixed point

integers. We have also noted that symbols for fixed point quantities can

be loaded using parameter algebra.

Besides fixed point numbers and parameter algebra, an array can be

defined using a variety of expressions. The general case can be symbol-

ized as follows:

S~@L(plj p2}““”,PN) = Q,, ~,”.=, ~

where ’!P~’represents parameter algebra for the itJ dimension, and the “~”

are expressions which cause the block to be loaded completely. \
The’ “----

be any of the following expressions:

1.

2.

3*

DIXPL(2).(B)77653,-62713,RST(3).256,-7212,(B)1371,FNP=XPU?+769

A fixed point integer, that is, a string of decimal digits,
preceded, if desired, by a sign and the value of which must
be less than 227 on the 7C90, 2% on the 7030.
12, -15792132

Parameter algebra, that is, parentheses-free algebra involv-
ing fixed point literals and symbols for fixed point numbers.

Octal fixed point integers, defined by prefixing an octal
integer with a “B” in Parentheses* Once a symbol ‘as
been loaded by an expression of this type it can appear in
a parameter algebra expression. Octal numbers as such can-
not appear in parameter algebra because this algebra must
be parentheses free. Octal numbers are restricted to the
same magnitudes as fixed point numbers, given above. Once
the “B” occurs. all numbers thereafter for the same array
are considered octal until overruled by some other entry.
Example:

-50-

IntLy

In this case 77653, -62713, and 1371 are octal. 256,-7212,
and 769 are decimal.

4. Boolean words, defined by prefixing an unsigned octal number
with a “W” in parentheses. A Boolean word is used in logi-
cal or Boolean arithmetic and may fill the ent re machine

kword; thus a Boolean word must be less than 23 on the 7090
and 264 on the 7030. Boolean words cannot be used in param-
eter algebra, but only in the machine algebra described in
Chapter 4 (see ;a~es9j-96). The prefix “W” operates in the
same manner as B , that is, all numbers entered thereafter
for the same array are considered Boolean until overruled by
some other entry. Example:

D@xx(3)=(w)457620001713, 76253I3, 963, AYX(2)=(B)76632, (w)75931,

In the above, 457620001713 and 762313 are Boolean, while 963
is fixed point, because it contains a digit greater than 7.
In the loading of AYX we see the “(W)” overruling the “(B)”
on the first entry. Note that Boolean numbers are always un-
signed.

5. Fixed point decimal numbers may also be entered by prefixing
them with “A” in parentheses, in the case where a “B” or “W”
is operative and the fixed point number does not contain a
digit greater than 7. Like the latter, “A” holds for the
same array until overruled. Example:

D@W(3) = (B)70707, 17231, (A)26513

70707 and 17231 are octal numbers and 26513 is decimal.

6. Floating point numbers may be entered using the following se-
quence of characters: a sign (optional), a string of from
1 to 16 decimal digits containing a decimal point, followed
by another sign and a fixed point number representing the ex-
ponent (optional). By “exponent” is meant the power of ten
by which the expression is to be multiplied. For example:

D@JIccD(2,2) = 3.1415926535, -2.742653-7, 500.263+12, -210732,

All the numbers above are legal floating point numbe s. Floati
point numbers N are restricted to approximately 10-$ <N<1O P

on the 7090, 10-307 < N < 103°7 on the 7030.

7. Zeroes may be inserted by prefixing a parameter algebra ex-
pression with “Z” in parentheses. The number of zeros

-51-

specified by the algebraic expression is entered. If no
parameter algebra is given, the remainder of the block is
filled with zeros. For example:

DIACDX(20,30)=2.7123, 5.7561, (Z), ARPX(N’IT)= (Z)~-3, 5.23, 6.51, 7.32

Two numbers are entered in “ACDX’*and the remainder of the block
is set to zero. All but the last three locations of “ARPX” are
set to zero, then the remaining three non-zero numbers are
loaded. In both cases, loading is complete, as required.

8. A given number of locations maybe skipped (without being
set to zero) by the entry “S” in parentheses followed by
a parameter algebra expression. The “skip” feature is written
in the same manner as the “zero” feature. For example:

DIACDY(NTl) = 3, 6, 12, (S), ACDA(21) = 2.o, (S) 19, 3.561,

9. A number, once entered, may be re eated a specified number
!l-&--of times by following it with R in parentheses and param-

eter algebra telling the number of repetitions desired.
As with “Z” and “S,!’if no parameter algebra is given, or
ifthe result of the algebra is zero, the number is repeated
until the end of the block. For example:

DIACDB(5) = 2.7653+6, (R), ACDC(NTT)=205617, 9.986301-10, (R)~-3,8.653,

In “ACDB”, the entire block is filled with one number; however,
only a portion of “AClX!”is filled with the repeated number
9.986301-10. As always, loading is complete. The last N num-
bers loaded into a block may be repeated M times by the entry
“N(R)M” between commas, as illustrated below:

D[BBCX(25) = 3,2,1,5,4 (R) 5,6.513, ...

The numbers 3, 2, 1, 5 are entered six times; the last number
of the block is 6.513.

10. Any number of linear interpolants maybe entered between
two floating point numbers by placing between them an “I”
in parentheses followed by p&%ameter algebra specifying
the number of interpolants desired. Note that this entry
may be used only with floating point numbers. For example:

DIAcDD(626) = 1.0, (1) 623,625.0, 7.363-1I,

-52- ‘

The 623 interpolants 2.0, 3.0, 624.o are entered in “ACDD”
between the two numbers shown.

11. A block may be loaded with multiples of a fixed point
number by the entry of “M” in parentheses followed by
parameter algebra specif~ng the number for which mul-
tiples are desired. If the block has dimension “P,”
the multiples of a specified number “N” entered are:
O, N, 2N, 3N, (P-1)N. Only the entry for mul-
tiples may occur if it occur= all in the loading of
an array. Examples:

DIACDXM(30)=(M)20,BMULXA(5)=(M)2,LWXB(GE)=(M)5)

BMU13A(GE+1)=(M)3,BMUITB(2WH)=(M)GE+1,

The multiples defined by this exemple are the same as would be
obtained by writing

D\AcDxM(30) = 0,20,40,60,...,~0, DMUXA(5)=0,2,4,6,8,etc.

This example computes what we shall call the index multiples of
the arrays ACDX, DMUL, and EMUIL’,which were defined in pre-
vious examples of this chapter. For further discussion see be-
low, page 54, and examples in Chapter 8, pages 168-169. By use of
the “(M)” entry one can also load the multiples of a number I
plus a second number J. The entry’’J(M)I”will enter the num-
bers J, J+I, J+2*I, J+3*I, etc., to the end of the block named.
Thus, for instance, one might enter the 476 consecutive nmbers
25, 26, 27, 499,500 by the following entry:

DICPDAL(426)=25(M)1,...

12. A group of floating point numbers all having the same ex-
ponent may be entered without writing the exponent more
than once, by preceding them with an “E” in parentheses
followed by the exponent, in fixed decimal representa-
tion (Parameter algebra is not allowed). For example,
the following two entries are equivalent:

Dlm(6)=3.512+6,-2.7I3+6,9.9I&6,2o.251+6,-3.3216+6,2.51 5+6,

DIHFNT(6)=(E)+6,3.512,-2.713,9.916,20.251,-3.3216,2.515,

The exponent specified by the “E” entry is effective until it is
overruled by a different “E” entry, a fixed point number, a
floating point number with an explicitly stated exponent, or the
definition of another symbol.

-53-

The usage of index multiples. Before we continue our jaunt through

the jungle of “D” and “E” card notation, a brief aside on index multiples

is appropriate at this point, to ease any curiosity on the subject that

might

sions

have been aroused by paragraph 11 above.

Suppose we have am array “B,” which has been defined with dimen-

1, J, K. (The multidimensional case canbe generalized from this

treatment of the three-dimensional case.) In IVY the first element of

this array will have indices (1,1,1). Most coding systems start indexing

with (0,0,0) because of the way computers are built; but IVYj by an in-

ternal trick, causes all indexing to start with 1. Similarly the last

element of this array has indices (I,J,K). Now, suppose we wish to com-

pute the

presents

address of some random element (i,j,k) of the array. If “B” re-

the base address minus 1, the address of the (i,j,k) element is:

B+i+(j-l)I+(k-l)IJ

We see that to compute this address, three multiplications are

- multip~cationsin general, for an n-dimensional array, ~

necessary;

are re-
C

quired to compute the address. However, multiplications

altogether if we happen to have access to a table of the

and of IJ. It is for this purpose that the “M” entry is

can be avoided

multiples of I

used on “D”

cards: to set up tables of index

addressing is needed. The act~l

of index multiples are covered in

multiples for all arrays where random

details of coding involving the use

Chapter8, pages 168-169.

-54-

Other entries allowed on “D” cards. Besides defining symbols and

blocks, with the options of loading mentioned above, two other types of

entries are permitted on “D” cards: one to set up equivalent blocks, and

the second to skip certain definitions under parameter control.

1. Equivalent blocks are two blocks of data which share the same

memory locations and have the same dimensions, but which have different

symbols. Tne use of equivalence is a means to conserve storage by using

the ssme area for a second array when the need for the first has disap-

peared. A second block is defined as equivalent to a previously defined

block by prefixing its symbol with an asterisk (*) and following it with

an equal sign followed by the first symbol. The second symbol must not

have been previously defined. A symbol which has once appeared on the

left of an equivalence may not appear on the right of a subsequent equi-

valence statement; i.e., equivalence chains are not allowed. However,

two or more symbols may be defined as equivalent to the same symbol. The

example which follows is based on previous block definitions given as

examples in this chapter:

l)l+@Acl)E.Acl)D,*ACDF=GE,*ACDH=GE, *ACDG=U,

so that “ACDE” is a vector 626 in length, “ACDF” and “ACDH” both repre-

sent the same parameter “GE,” and “AClXl”is a block with dimensions (3,

GE+l, 2+$TH)sharing storage with “RMULT.”

2. The ~~ feature allows the programmer to skip certain defini-

tions of symbols, or to define a symbol in one of several ways, under

.55-

pareneter control. This is effected by placing “@” in parentheses, fol-

lowed by a parameter algebra expression and an equal sign with one of

eight conditions. If the condition is met, the definitions following the

comma are skipped until another “@” is encountered between commas. The

general format is as follows:

(@) P=c, ... (definitions) @J. ...

where “P” represents a parameter algebra expression and “C” represents one

of the conditions:

c CONDITION

ZorO

NZ

Lz

ZL

GZ

%

P

M

jump if expression is zero

jump if expression is non-zero

jump if expression is less than zero

jump if expression is zero or less

jump if expression is greater than zero

jump if expression is zero or greater

jump if expression is plus

jump if expression is minus

If the condition is met, the definitions following the comma are skipped

until the “,$J,” is encountered. If the condition is not met, the defini-

tions are handled in a normal manner. For example:

Dl(@) GE-2=0, ACDH(’5,7,11),*ACDL=13MU~,@J,

Dl(@) 2WH-7=ZG,ACDJ(2*NTr,GE+1),@, (@)2wrH-7=Lz,

D lAcDJ(2wIH-7,GE+l), $J,

-56-

Here we see that the definitions of “ACDH” and “ACDI” are skipped if GE

Is equal to 2, and that the definition of “ACDJ” takes on one of two

forms depending on the value of “W’TH-7.”

The loading of data on “E” cards. Data may also be loaded from “E”

cards, but one should bear in mind that all symbols appearing on “E” cards

must have been previously defined on “D” cards, and the dimensions of any

blocks loaded from “E” cards must also have been previously defined.

Thus on “E” cards only the symbol for the block can appear to the left of

an equal sign, since the dimensions are known. The expressions allowed

on the right of the equal sign are the same as those allowed on “D” cards.

For example, the following “E” card will.load two blocks defined in ex-

amples of “D” cards earlier in this chapter:

EIBMULT = 2.56312-13, (1)25,9.6732153-2, (R)3, (S),CVEC=l.,2.,3.,h.,11.72,

Note that as on “D” cards, loading must be complete. The “(S)” in the

expression for “BMUIll”guarantees this.

The “jump” feature is also allowed on “E” cards in order to skip

the loading of a certain block or to load it in one of two or more alter-

native ways. The “equivalence”feature is not allowed unless the symbol

to the left of the equal sign has been defined by its appearance on a “D”

card sarisdimensions, since the “E” card is merely a loading card, and not

one on which symbols can be defined. In other words, no symbol can make

its first appearance on an “E” card. For example, the-entry “WXCMT=BMULT”

is permissible since “TIMI’”has occurred on an earlier “D” card in this

chapter, without dimensions. “*BMUIT=AVECT” is not legal since “EMULT”

-57-

has already been defined with dimensions and hence assigned a location

in core. “*AcDK=~” is not le~l since “ACDK” has not occurred at all

on a previous “D” card.

Double-stored data. An entry for loading double-stored data is per-

mitted on “E” cards; this entry is not allowed on “D” cards. Double-

stored data is data each word of which contains two numbers paired in

the single memory location. The high-order portion, called the c#antit~

or simply “Q,” can be a signe~ fixed or floating point number. The low-

order portion, called the ~ or “T,” is an unsigned fixed-point integer

15
which must be less than 2 . The exact length of the tag in bits can be

specified by parameter algebra. The IVY algebraic language has special

formats for handling double-stored data, discussed in Chapter 4, pages

79-8o . Double-stored data has many uses, the chief being in mesh-type

problems for solving differential equations. For instance, in boundary

value problems, the boundary points can be labeled with tags having dif-

ferent values from the tags at interior points. In hydrodynamics codes,

points corresponding to different substances can be identified by their

tags, and so on. The format for loading double-stored data is as follows:

SYMB@L(Q.P) = El, E2,...,~, SYMB@L(T.P) = F,, F2,...,FN

where the “Q” signals that the “Q” portion of the block is to be loaded,

and “P” represents parameter algebra whose value gives the tag length in

bits. The “Ei” are expressions for fixed or floating point numbers which

completely load the block. “T” now signals that the tag portion is to be

loaded, “P” being the same expression for the length of the tag as

-5$-

I

appeared in the first parentheses. The “Fi” are expressions for unsigned

fixed point integers which completely load the block. For example:

EIAVECT(Q.3)=~.32132-2,4.71531-l,(I)N’IT-3,2.1532+2,AVECT(T.3)=

El(B)1,2,3,7,6,5,4,2,1,7,(R),BMuU(T.GE+2)=TH,TH+~,TH+2,15,14,

E112, 3, 5, (S),

We thus note that AVECT is loaded with a tag 3 bits in length, and that

both the “Q” and “T” portions are loaded completely. “BMUL!T,”a block

which has been loaded previously, is now defined to have a tag GE+2, or

4, bits long, and the tag portion is then loaded. This is possible only

when a block contains floating point numbers: the block can be loaded

on a “D” or “E” card with floating point numbers without specifying “Q”

and the tag length, and the tag can then be loaded on “E” cards in the

normal way.

=“ Before proceeding to the study of remark and calling se-

quence cards, a sumary of the treatment of “D” and “E” cards is needed.

This summary, for review purposes as well as for quick reference, is

given in Table II.

-59-

COL. 1

D

TABLE II

SUMMARY OF ENTRIES ALLOWED ON “D” AND “E” CARDS

FORMATS AND EXPLANATION:

1. “SYMB$L1“ is entered in symbol table.

2. “SYMB~L
d?

“ is entered in symbol table, assigned
an ad ess, and allotted 11 12 ... IN words of core.

3. “SYMB@L “
2

is entered in
and 10 ded with Q.

4. ,,=@4,t is handled as
ing must be complete.
of the following:

a.

b.

c.

d.

e.

f.

g-

h.

i.

J.

k.

Fixed point number
parameter algebra.

symbol table, assigned address,

case 2 and also loaded. Ioad-
“Q” and the “Ei” maybe any

(sign and decimal digits) or

Floating point number (sign, digits with decimal
point, * exp. if desired).

(B)N1, N2,...NI, N2, etc., are
integers until (B) overruled.

(W)MI, M$,...M , M , etc., are
words un il (W) ov&ruled.

~&&~2~~~~1 /A~&~t&~e~ .

octal fixed point

Boolean octal

fixed point decimal

(Z)P insert P zeroes. “P” represents parsmeter
algebra. Proceed to end of block if P=O.

(R)P repeat last entry P times.

(S)P skip P words.

(I)P insert P interpolants

(M)P insert multiples of P
to end of block.

between 2 fl. pt. numbers

(o, P, 2P, 3P,...,)

(E)kN the following fl. pt. numbers all have ex-
ponent = * N until overruled.

All names except remark names, numbered symbols and formula
names must be defined on “D” cards.

-60-

TABLE II (Continued)

I

I

COL. 1

D

E

of two

FORMATS AND EXPLANATION

*SYMB@Li = SYMB@Lj,(@) P=C,...definition@...@

1. SYMB@L. equivalent to S~@Lj providing S~@Lj is defined
and wa% not defined by another “*” statement.

2. If parameter algebra “P” satisfies one of the conditions
“c” (Z or O, NZ, M, GZ, ZL, ZG, P, M) definitions are
skipped.

SYMB@L1 SYMB@L2(Q.P) = Q1,Q2,009~, ~~L5= ‘1’ ‘2’”””;pN’
(T.P)= T1, T2,..., ~

Used for loading previously defined blocks. Iaading must be
complete.

10 “Pi’’and’~i’’areany of the expressions under “4” above.

2. ‘Ti’’areunsigned fixed point numbers.

3* “Q.p” and “T.P” mean “qyantity” and “tag” of DS number,
IIrlP = tag length in bits.

Jump and equivalence can also be used on “E” cards, equivalence
with some restrictions.

The definition and loading of remarks. Remarks are usually for one

purposes: first, to provide comments and headings for output listi-

ngs and cards; and second, to provide format statements for printing,

punching, and microfilm output. In this section we will consider only re-

marks for comment purposes. Remarks for use as format statements are de-

scribed in Chapter 6, pages 132-14Z By using “R” cards and their contin-

uations, if necessary, remark blocks can be defined and/or loaded; the

“R” card for remarks is thus analogous in function to the “D” card for

data. However, no great parallel

punched. An “R” card must always

is found in the way these cards are

begin with a symbol which is called the

-6I-

“name” of the remark. Only one name can appear on an “R” card. If a re-

mark is too long to fit on a single card, it may be continued on the next

card providing the continuation card has a blank in column 1. (This

point was first made in Chapter 2.)

The general format of an “R” card is as follows:

1. “R” in column 1.

2. Symbol or name of remark. This maybe any legal symbol or
numbered symbol.

3. Optitlnal: after the symbol, a parameter algebra expression
in parentheses. The value of this expression is takenby
IVY to be the number of characters in the remark, so that
IVY will set aside this amount of space for the remark.

4. An equal sign, followed by any group of Hollerith charac-
ters, which may fi31 any number of cards. The number of
characters in the remark must not exceed the number defined
by the entry of “3” if this option is used.

5. In three consecutive columns, the characters @#@to signal the
end of the remark. rd~ need not appear if the remark is ter-
minated by the end of a card.

The remark as stored in core consists of all characters, taken in

order, from the first character to the right of the equal sign to the

last character to the left of $$$. These characters will be printed if

the symbol of the remark is specified in a calling sequence to “@R,”

the print routine (page 131). By using the characters 1$ in two

consecutive columns in a remark, the remark may be printed on two or more

lines: the portion of the remark following $@ will be printed on the

next line below the portion preceding @@. The characters $& are not

printed. Examples of remark entries:

-62-

N(YI’ES

R I RL =W~CES”~AA~~~~SA@FtiS@@~S~$@ 1, 2

R I REM(NTT*3+GE) = @#$ 3

R I R2 = THIS%S’A”@#%’W@’’LINE%MARK$$@ 4

R I R3 (3627) = c@NsmucmD%wH%@@ws@#”@@# 5

R I REMB=BESSEL%UNCTIONS”CCM?UTED%Y%ECURSION’’FORMULA.“ SEE”ANY%A33LE%O%

I ERIFYAACCURACY* ~j$! 6

Notes:

1. The following conventions should be observed to make the coding

sheets appear unambiguous to the keypuncher: “blank” is represented by

the carat “’’”;n blanks are represented by the number “n” in a box: ~

Alphabetic “I” must be written with

it from numeric “l”; alphabetic “@”

numeric zero; and alphabetic “E” is

ber two.

bars or dotted (“i”) to distinguish

is slashed to distinguish it from

slashed to distinguish it from num-

2. Our first remark is an illustration of a simple heading, the

name of which is a numbered symbol presumably defined on the “S” card.

3* In this case, space is assigned for a remark having NIT*3+GE or

110 characters. No characters are loaded. It is presumed that a remark

will later be constructed in the space, for instance, by “@CM,” the

character manipulation subroutine described in Chapter 6, pages 154-156.

4. In R2 we see the

If printed, this remark

THIS IS A

TW$4LINEREMARK

convention for printing a remark on two lines.

wi2J_appear as fo120ws:

-63-

5* Space for 3627 characters is reserved. 27 of these are loaded,

namely, the comment and its $@ spacing control. Note that to avoid con-

fusion, the $!@and $$?$are separated by a blink. 3600 spaces remain in

a block; a 60 x 60 character graph could, for instance, be constructed

in the remaining portion of this remark block using “$X.”

6. An example of a remark which is continued onto a second card.

Note that the continuation card has a blank in column 1, as reqpired.

The loading of calling sequence blocks. Calling sequence blocks,

for the use of subroutines, are loaded from “K” cards. As has been re-

marked previously, the symbol assigned to a calling sequence block must

have been previously defined, either by its occurrence on a “D” card or

by its occurrence in the naming of a numbered block on an “S” card. Con-

tinuations of a “K” card must have “blank” in column 1 since the symbol

of the block is assigned on the “K” card. The general format of a “K”

card is as follows:

K]SYMB@(P) = (..calling sequence information...)

where, of course, the calling sequence information enclosed in Paren-

theses may be continued onto subsequent cards if necessary. “SYMB@L” re-

presents any legal, previously defined symbol or numbered symbol. The

optional entry “(P)” is parameter algebra defining the length of the

calling sequence in mchine words. Inside the parentheses to the right

of the equal sign may occur any number of calling sequence word entries,

separated by colons. The information in each entry between colons is

stored into one full word of the machine being used. The calling

-64-

sequence word entry, to

in constructing calling

be described shortly, allows for great flexibility

sequences. The IVY subroutines described in Chap-

ter 6 use only a portion of the available calling sequence

the full generality is available for those programmers who

struct their own subroutines and calling sequences.

A digression on notation. Certain notations are used

words; however,

wish to con-

in the IVY sys-

tem for addressing various quantities connected with the control word,

i.e., the word associated with a symbol in the symbol table which contains

the base address minus one and the count of the block having this particu-

lar symbol. These notations are as follows, where “AD” represents any

s~bol, except IVY swbols sta~ing with “?”:

NOTATION QUANTITY GIVXN IN CALLING SEQUENCE

AD(@) control word of “AD”

AD(~wP) position of control word of “AD”

AI)(@WA) control word
-1 of “~”)

AD(~wc) control word

address (base

count of “AD”

address

Calling sequence word entries on “K” cards set up full words in the calling

sequence in the same format as control words. Thus, below we will speak

of the “@WA” or “@WC” portion of a calling sequence word, and it is hoped

that

more

as the manual progresses, the reasons for this notation will become

clear.

CalMng sequence word entries. Calling sequences may contain any of

the following entries between colons:

-65-

1. ~XXX, where “XXX” represents one, two, or three alphanumeric
characters. The core BCD (octal) equivalent of these char-
acters, exclusive of the “~,” is placed in the “@WC” portion
of the calling sequence word. A table of hollerith charac-
ters and their BCD octal equivalents follows:

TABIE III

HOLLERITH CHARACTERS AND OCTAL EQUIVALENTS

Character BCD Character BCD Character BCD

o
1

2
3
4

60
01
02
03
04
05
06
07
10
11

H
I
J
K
L
M

z
P
Q

30

?!
42
43
u
45
46
47
50

x
Y
z
+

7=
1

67
70
71

E
54
61
13
14

33

A 21 R 51
B 22 s 62 ~;
c 23 T 63
D 24 u 64) 34
E 25 v 65 73
F 26 w 66 &ank 00
G 27

2. AD(@)+P, where “AD” represents any legal symbol, numbered
or not, and “+P” represents parameter algebra. The control
word associated with “AD,” as modified by parameter algebra,
is placed in the entire calling sequence word.

3a. AD(~WP), where “AD” represents any legal symbol, numbered
or not. The location of the control word of “AD” is placed
in the “@WA” portion of the calling sequence word.

b. KD(@WC)+P, where “~” is the above and “+p” i.s any parameter

algebra. The count of the control word of “AD,” as modified
by the parameter algebra, is placed in the “@A” Portion of
the calling sequence word.

-66-

I
I

1

!

I
I

C. AD($WA)+P. Same as “fi” except the address of the control
word of “AD” is used. 1.

d. AD(P), where “AD” is any legal non-numbered symbol and “P”
is parameter algebra. The contents of location AD($WA)+P
are placed in the calling sequence word.

e. P, i.e., parameter algebra. The ’resultof the algebra is
placed in the calling sequence w&d.

I

4a. Anentry of type 1, followed by a comma snd an entry of type
>> ~~ ~ 3C is allowed.

b. An entry of type 1 followed by a’comma and by an entry of
type ~ is allowed, providing the number addressed is fixed
point and less than 218, or by an entry of type je prov”d-
ing the result of the parameter ~lgebra is less than 2lb.

Chapter 6 is rife with examples of calling sequences to the various

IVY subroutines. Only one example will be given here: suppose we wish
I

to enter “$TP,” the tape program, internally. If we use the same calling
I

sequence covered in the example in Chapter ~ (page 35) on “T” cards, as-

signing it the name “TAPE” (which we

vious occurrence on a “D” card), the

as follows:

presume has been

“K” ca{d calling

I

defined by its pre-

sequence appears

I

KTAPE=(@lW3:@fR3,GE(@A)+l :SN(@):@&3,AX(@A)+3:ST(7W) :$RW3:

l~RW2:@B2,4:@D2,17iP(@A)+ GE:FRNB(#W))

I
Note that, as on “R” cards, the parameter a~gebra expressing the length

,
of the calling sequence is optional. If th{s algebra is given, the call-

ing sequence need not be completely filled, and entries can be computed

by the programmer, if desired. Examples of $his technique appear in

Chapter 8, pages 182-184.
I
,
,

I
I

-67.. ~
I

I

I

CHAPIER 4

THE IVY AIGEBRAIC LANGUAGE

The IVY algebraic language, or machine algebra, iS capable of han-

dling expressions in floating point, fixed point, Boolean, or index re-

gister algebra, as well as the simple parameter algebra already discussed

in Chapter 3. We will consider these types of algebra in succession,

with examples. Index branching will be covered along with index algebra

and Chapter 5 will consider other types of branching. A SUmmaI’y of

machine algebra appears in Chapter 9) Pages 190-195.

The operation “=” is permitted in all classes of algebra except

parameter algebra, and means the following: “evaluate the expression to

the right of the ‘.’ sign, and place the result in the location specified

on the left of the ‘=’ sign.” In other words, expressions such as

B =B+l

are allowed and make sense with this definition of “=”. This statement

means “increment the number in location ‘Bt by one.” With this pre-

liminary remark we shall launch ourselves into a discussion of the var-

ious types of algebra.

-68-

Floating point algebra. The follo

floating point algebra:

OPERATION

+

*

*

/

//

+?

-7

*$

.$R

.$CX

NCY1’E

1

2

3

.$CA

.@

NU3!ES:

1. The expression for the exponex
parameter algebra. For exampl

B**2, B**(GE + 1),

2. Reciprocal divide differs fror

the denominator appears first,
equivalent. See pages 72-73.

-69-

lg operations are permitted in

MEANING

add

subtract

multiply

raise to a power

divide

reciprocal divide

take abs. value of preceding

take neg. abs. value
of preceding
change sign of preceding

take square root of preceding

convert exponent minus one
of preceding result to fixed
point integer. (Integer
part of log2 [result]).

convert preceding result to
fixed point integer.

if result of preceding is
+0, settol.

If result of preceding is
= O, set to 1; otherwise
set to O.

following “*,” must be in

+(+F(2qH)

egular divide only in that

Thus, “C//B” and “B/C” are

.

3. This operation is valid only when the preceding result is
positive. If an attempt is made to take the square root
of a negative number, an indicator is set which may be
tested by entering the IVY subroutine “$!?T”(Chapter 6,
pages 128-I3o .)

Parenthesis conventions. Floating point algebra, unlike parameter

algebra, may contain parentheses, for one of two purposes: first, to

contain a modifier of a symbol, or second, to contain units of the alge-

bra. The second use will be described here; the first will.be encoun-

tered later in the section on modifiers (pages 74-84).

As in parameter

operations proceed in

observe the following

and its equivalent in

algebra, if parentheses are ~cking altogether~

simple sequence from left to right. For example,

equation in machine algebra without parentheses

display algebra:

MACHINE DISPIAY

RI = C=*2 - 4.0Wl+W3.#R - C2/2.OWl, r, = m-ca.c
2 1

The

one

equation shown is an attempt to use the quadratic formula to find

root of a quadratic equation with real roots. Correctly written,

with parentheses, the equations appear as follows:

MACHINE DISPLAY

m-c,RI = C=*2-(4.0WI*C3) .#R-C2/(2.~Cl), .rI=
2C1

Note that the purpose of parentheses in machine algebra is to localize

the operations so that they do not affect the result of the previous

-70-

computation. When a left parenthesis is encountered, a new level of

operation commences in which the algebra Within parentheses is performed,

with the convention that each operation within parentheses is performed

on the preceding result only as far back as the left parenthesis. The

above example might be diagramed as follows:

Level O:

z

R1-Result Adr.

s

&Res.lt Adr. Continue

Level 1:

c“mp”-~ “’ “’

Level 2: *F--I*] Ea-+%$1
Ten levels, i.e., ten sets of parentheses within parentheses, are allowed

in IVY. Thus one can evaluate quite complicated expressions in the

machine algebra, for example:

MACHINE

2.0 + (c1*(c-(3+TH))) +c3H2

Note: To avoid confusion, brackets
can be used on coding sheets
as parentheses, however.

11
[

if

However, it should be pointed out that

DISPLAY

(2+C1C23+TH + C3)2

u]“ and “curly” brackets “ “
desired. They will be punched

this example can be written with

only one set of parentheses, as follows:

C-(fiTH)++Cl +

In general most equations can be optimized

theses occur, by moving multiplications

-71-

and

2.0 + cy*2

so that a minimum of paren-

exponentiation to the

beginning of the equation and by using the “reciprocal divide” (//) in-

struction. Below is the quadratic formula, optimized in this fashion,

and evaluation of the polynomial P~= d1y3 +d2y2+dy+
3

algebra:

Thus, note

one set of

RI = 2.@Cl//C2*2-(4*ClW3).#R-C2

P4 = D1*Y+D2*Y+D3*Y+D4

that the quadratic formula cannot be optimized

parentheses, while polynomial evaluation needs

d4) in machine

for better than

no parentheses

whatsoever. A peculiarity of the “//” operation should be noted here:

everything to the left of “//” is the denominator of the fraction being

computed; everything to the right is the numerator. Thus parentheses are

not needed to enclose either expression, and the field of the square root

operation (in this case) need not be enclosed in parentheses since its

field of operation is assumedto start to the right of the “//.”

A further advantage of the “//” operation becomes apparent if one

considers the evaluation of continued fractions; for instance, in display

algebra, the expression

y=~

d+e
f+g

This quantity can be written in machine algebra in either of the follow-

ing ways:

Y = ((F + G//E)

We note that the first

i-D//C)+H//B, or Y = B/(H -I-(C/D + (E/(F+G))))

expression, using

-72-

the reciprocal divide

instruction, has two less sets of parentheses than the second. Generally,

algebraic expressions containing fractions with complicated denominators

can be

ter 8,

evaluated more efficiently using the “//” instruction. See Chap-

pages 163-164, for further discussion.

Operands which may appear in a floating point expression. We

have seen above a number of allowed operands in the examples given. Be-

low is a complete list of the operands which may appear:

1. Any symbol for a

and/or loaded as a floating

first element of the block.

2. Any symbol as in

IVY to mean the nth element—

single word or array which has been defined

point number, interpreted by IVY to mean the

“l” followed by a number n, interpreted by

of the block.

3. Any floating point literal, i.e., a string of digits contain-

ing a decimal point and which may be followed by an exponent. The nota-

tion here is the same as the notation for loading floating point numbers

on “D” and “E” cards, except that in literals the decimal point must

occur between two digits, and not at the beginning or end of the number.

Examples: 2.o, 3.1415926535, 500.62-3, 256.15+2, etc. Illegal: 2, 2.,

.2, etc.

4. Any parameter algebra expression (including a single symbol

or a single fixed point literal)

Some further examples of machine

clarify the above list.

may occur following

algebra and display

the operation “**.”

algebra follow, to

-73-

MACHINE ALGEBRA DISPIAY AIGEBRA

Y=z - 3.w(z-6.53) Y = (z-3) (z-6.53)

AREA=R**3*4.@+3.1415926535/3.0
4

A=~fir3

AREAT = B1 + B2W.7H

DFUV = U1*VI + (U-V2)

D =B+ C+@

D_ B+~+(C+#)

CPUV1 = U&V3-(U3*V2)

D=Z1-Yl**2+(Z2-Y&2)
+ (Z3-Y3~2).#R

YS1 = AX+ (2.WBX)*AX
or AX + BX~2

‘t
=’~(bl +b2)h

+ (U3W3) U“v=uv
+ ‘2V2 + ‘3V3

d=lb;~l

d= Ibl + ICI

(u+ = U2V3 - U3V2

f
d= (Z1-yl)2 + (Z2-Y2)2 + (Z3 -Y3)2

+ (BX**2) Y; = a: + 2axbx + b: or (ax + bx)2

We note that in many of the above expressions, more parentheses are needed

in the machine algebra than in the display algebra counterparts. However,

quite often in general equations fewer parentheses are needed in machine

algebra than in display algebra. In a complete code, quite frequently the

number of parentheses used will usually be less than the number needed in

display algebra.

Address modifiers. Any symbol in a floating point expression

may be followed by a modifier in parentheses. ‘Thepurpose of these modi-

fiers is to do one of the following:

A. To modify the address of a block in some ways, e.g., by mems

of parameter algebra, contents of an index register. or stored address.

B. To specify a particular arithmetic such as fixed point or

-74-

Boolean. Floating

modifiers is used!

text, e.g., by the

point algebra

or unless the

occurrence of

is always assumed unless one of these

arithmetic desired is obvious from con-

a fixed point literal or an index regis-

ter symbol in the expression.

c. To cause an address to be interpreted in.a particular way, as

for instance to address the “Q” portion of a double stored number.

D. To cause only a portion of the quantity addressed to be used,

such as the sign only or the magnitude only.

E. To cause all or part of the control word of a symbol to be

used instead of the data addressed by the symbol.

F. To cause the contents of two locations to be swapped.

For the sake of completeness, all modifiers allowed in IVY algebra

will be discussed here. Many of these are appropriate only in fixed

point or Boolean algebra. A summary appears in Chapter 9, page 1930

These modifiers will.now be discussed in turn and the conventions illus-

trated by exsmples.

A. A symbol may be modified by parameter algebra alone, parsm-

eter algebra plus an index register, as follows (where P represents any

parsmeter algebra, Xn represents an index register symbol, An represents

a store address symbol) and SYMBOL (#WA) is the control word address of

the block:

AIGEBRAIC FORM ADDRESS CCMPILED

SYMB@L(P) SYMB@L(#WA) + P

SYMB~L(Xn + P) SYMB~L(#WA) + P modified
by C(Xn)

-75-

AIGEBRAIC FORM (continued) ADDRESS COMPILED

SYMB@L(Xn) SYMB@L(@WA) modified W C(Xn)

S~@L(An) An

SYMB~L(Xn i-An) An

*C(X.) (“the contents of X=”) provides a dynamic

modified by C(Xn)

address modification;
theLLC(Xn)may be changed titwill during execution of a program, thus
dynamically stepping through an array or calling sequence. The C(Xn)
are added to the specified address in order.to perform this modifi-
cation. On the 7090, this addition is simulated, and how this is
done is of no concern here; the 7090 programmer can safely assume that
his index registers add as surely as do those of the 7030. In the IVY
system, index registers always contain positive values and are not
allowed to assume negative values, even on the 7030, which allows
signed value fields. The extra fields of the 7030 index register are
not accessible to the programmer unless he uses longhand code.

The “store address” feature allows the algebraic coder the unique

privilege of storing addresses, if he so desires. That is, he can

first compute the address he wishes to use, assigning to it one of the

“An” symbols, and then by placing it in parentheses as a modifier, in

a later expression, cause a “store address” to insert the calculated

expression. Thus the symbol modified

any symbol could be used, although in

addressed by “An” is generally used.

address is as follows:

An.m = F

SY@L(Xn+ An) = ...

● .* + SYMB@L(An) * ...

... (“An” occurs “m” times)

by an “An” expression is a dummy;

practice the symbol for the block

The format for computing a stored

I

-76-

That is, An is entered followed by a period and one or more digits which

give the number of times “An” occurs in the expressions following. The

letter “F” represents a fixed point expression for the address. The code

which follows must contain “m” symbols modified by “An”. Once these “m”

symbols have occurred, the same “An” is

a different address. Since only a very

necessary to encompass a given sequence

use each “An“ as its field of operation

available to be re-used to store

few distinct “An’s” are usually

of code, one can quite easily re-

is completed, and thus reduce

considerably the number of “A” symbols specified on the “S” card (page 26).

The number of “A” symbols specified should be minimized by adopting the

above practice of re-using an “An” as soon as its field of action is com-

pleted. This is what is meant by “independent” store address expressions

mentioned in Chapter 2, page 28. Note that “An” entries are “formula-

limited,” that is, once an “An” is

must appear in the same formula.

The following exsmple

sione This is a segment of

not yet been discussed. By

this exsmple will be clear.

should

defined, all symbols modified by it

serve to illustrate the above discus-

an actual code, and many details in it have

the end of Chapter 5, all the techniques of

-77-

Line No. NOTES
c MIX h CR&SS A SECTIONS

2 Ill I MX.X9,($J) MXS=O,*I=XI. *S= X2, *M= X3, 11111@
3

4

5

6

7

8

9

10

II

12

13
II

—
M(I, MM), S= MS(M), (LI)S=O, @

II AI.3=C($W)+CXX(M), 1111@
-D

1(1, CXX2), C(I+AI)=O, (I), @

*
L2,1= MN(S), TI=MOV(S)*EV+I.0,

1
1111@

1!(L3)TI .M,
I

j TIzMO(S,M,WTI, A2,1 nC($W)+CXXU),

*
I (I,cxx2), c(I+AI)s T[*c(I+A2)+c(x+ AI), (x),

(LI)MO(S)Z M,
*

S= S+ I,(LZ),

LI, (M), (L4)ICT=NZ,
*

($P, $PR: $F, FMI($WP): $A,C($WP): HM:GM),
It h

4111 L’$(xg+l)t
J

15 L3, ($P, $$P: EP2($WP))
~

... , ,,

(B I

@

@ I

Ill

Ill
,!0

1.

2.

3.

4.

Here we see the “*” convention, which we first encountered on
“D” cards (page 55), used here to define new symbols for in-
dex registers. Index registers are the only quantities for
which this is allowed on “I” cards. Note also the use of the
“@” or “jump” feature, originally discussed in connection
with data (page 55). If the condition fo120wing the’’(#J)”en-
try is satisfied, the formula or formula set is not assembled.
No second “@’’between commas is needed. This feature is use-
ful in case a particular formula is not used in an assembly,
i.e., is not entered if the condition is satisfied. See page 104.

Expressions for Al and A2 are computed.

Index registers plus modifiers Al and A2 occur in these
expressions.

Here we see modification by index registers alone.

The above exsmple will also serve as an example for

which wild.be described in this chapter and the next.

other techniques

B. In an expression consisting entirely of symbols, and where the

-78-

L

type of arithmetic is not obvious from

gister symbols occur); if algebra other

context (no literals or index re-

than floating point is desired,

one of the modifiers “A” for fixed point or “B” for Boolean must be placed

within parentheses, separated from the modifier of type A by a comma,

after the expression to the left of the equal sign. The formats are as

follows:

SYMB@L(MA, A) = ... (fixed point e~ression)

SYMB@L(MA, B) = ... (Boolean expression)

where MA is a modifier of type A (i.e., a parameter algebra expression,

index register, etc.) and “A” denotes fixed point arithmetic following the

!!=II
9 and “B” denotes Boolean. Whenever one of these modifiers is present,

modifier “MA” must occur. For example, if we wish to compute a value for

a single fixed point quantity “CE,” if the expression the right of the “=”

is unambiguous, we can write

CE= ... (expression)

but if the expression is ambiguous, we must write

CE(l, A) = ... (expression)

The “A” and “B” modifiers can appear only to the left of an equal sign.

c. Modifiers for dealing with double stored numbers can occur only

to the

comma,

in the

right of an equal sign, and are added inside parentheses, after a

in the ssme manner as modifiers of type B. These modifiers appear

following format, where “MA” represents a modifier of type A,

which must be present, and where “P” represents any parsmeter algebra:

-79-

FORMAT EXPLANATION

SYMB@L(MA,Q.p) “Q” portion of DS number having tag
length P

SY@L(MA,M. P) Magnitude (absolute value) of “Q”

SYMB@L(MA,T.P) “T” portion, length P, of DS number.

Note that since the “T” portion of a double-stored number is unsigned,

the magnitude (“M”) modifier always unambiguously means the magnitude of

the “Q” portion. Also recall that the “Q” portion may be either fixed or

floating point, so that “SYMB@L(MA,Q.P)“ and “SYMB@L(MASM.p)”are ~big-

uous expressions, and if fixed point algebra iS desired~ the “A” modifier

described above must be used left of the ayual sign to specify arithmetic.

However, “T” is always fixed point and defines an expression as fixed

point unless other arithmetic is

follow. In the section on fixed

examples:

EXAMPLES

specified. Exsmples of these modifiers

point algebra we wild.encounter further

NOTES

SN(X1+3) = AGT(X2,T.3).$CA*FN(x2)/3e15621-06 1

AF(X3+GE+17) = Rm(l,Q.5)//cx(N1+3) - CRyZ(2,Q07) 2

NUTES: 1. In this example the use of “T” in a floating point expression
is permitted, since the quantity is followed by the opera-
tion “$CA” which converts it to a floating point number.

2. The “Q” portion of two numbers having different tag lengths
are used in this algebra.

If it is desired to compute the “Q” or “T” portion of the qUtitY

to the left of the equal sign, one must use expression modifiers, described

below on pages 83-84.

-80-

D. Modifiers of type D are used to impose the sign of a quantity

on the result of the previous calculation, or to ensure that only the

magnitude (absolute value) of a quantity takes part in an operation, and

in one case, to save the remainder of a division or the low-order part of

any floating point operation, for double precision purposes. Type Dmodi-

fiers can occur only to the right of an equal sign. These modifiers are

as follows:

FORMAT

~@L(MAIM)

+~$L(MAp$)

-~@L(MA,#)

*~@L(MAjl)

SYMS@L(MA,R)

EXPLANATION

use magnitude of addressed quantity

impose sign of addressed quantity on
previous result

impose negative of sign of addressed
quantity on previous result

multiply sign of addressed quantity
by sign of previous result

save the low order part of the result
of this operation in the IVY location
“~csl” -

An example of the magnitude modifier “M” is shown in line 8 of the coding

example on page 78. Other examples:

EXAMME

RxN(xlWE?)= GFG(X3)**3+GE(1,#)

AFG = ALPHA(X3+N) + B(X2)
*~(Xl+Al,jj)

SUMY=AB(X1+l,R) +AC(X1+l)
+ AD(xl+l)
EMG(X5+3+GE) = SRN(X2+1,R)
-SRT(X2+1) + #/FNT3

-81-

NOTE

1

2

3

4

NCYI’ES: 1.

2.

3.

4.

E.

The sign of GE1 is attached to the result of the previous
operation.

The signs of STV(X1+A1) and the preceding result are multi-
plied, and this resulting sign is attached to that result.
If the signs are alike, “+” will result; if unlike, “-” wi12.
resuit.

The low order part of the floating point result of this cal-
culation is stored in “#CSl,” from which it may be obtained
for double precision work. We recall.that on the 7090, both
a high-and low-order part are carried in all.floating point
operations; on the 7030, the “R” is a signal to execute
double precision operations followed by a “store low order”
instruction to “@CS1.” The “R” modifier, if at all.possible,
should always occur as near to the beginning of the expres-
sion as possible in order to speed compilation.

In this case, the remainder of the division, if any, is
stored in “~CSl” once the operation (division) has been com-
pleted.

Address modifiers of type E cause the symbol to be interpreted

so that the operand becomes all or part of the control word, or the ad-

dress of the control word, associated with that symbol. Ordinarily these

modifiers are used only with fixed point and index arithmetic. All of

these modifiers except “@Wl?”are allowed either to the left or to the

right of an equal sign. Type E modifiers are as follows:

MODIFIER FORMA!I! OPERAND GIVEN

_@L(@) control word

SYMB~L(~WA) control word address

SYMB~L(@C) control word count

EM@L(@P) position of control word

-62-

Note that no other modifiers

the control word modifiers.

in the computation of stored

of any type may appear in parentheses with

The chief use of control word modifiers is

addresses (see lines 4

on page ~), for which “~W” is ordinarily used; the

register values, using “$WA,” “$WC,” and “@lP”; and

volving the symbol table. Examples of these latter

the sections of this chapter

and in Appendix 1.

F. The swap modifier

dealing with index

“S” always appears

and

and 8 of the example

computation uf index

in manipulations in-

two uses are found in

fixed point algebra,

to the right of an equal

sign and must follow a type A modifier. The format is as follows:

SYMB@L1(MA) =

The contents of the two locations

No arithmetic is permitted to the

Expression modifiers. Two

fiers, may be appended to the end

SYMB@L2(MA,S)

are simply swapped, i.e., interchanged.

right of the equal sign.

modifiers, known as expression modi-

of an expression in order to specify

that the result is to be stored in the “Q” or “T” portion of the quantity

which appears to the left of the equal sign. These modifiers appear as

follows, where “MA” represents a modifier of type A which may or may not

be present, and where “P” represents any parameter algebra:

SYMB~L(MA) = (expression).j!!Q.P

SWOL(MA) = (expression).@T.P

Ordinarily the modifier “.$T.P” should follow only fixed point expres-

sions. “.$Q.P” may follow either fixed or floating point expressions,

-83-

since the “Q” portion of a double-stored number may be either fixed or

floating point.

Special symbols addressable by IVY algebra. Four of the special

“~” symbols in IVY represent data blocks and maybe addressed byalge-

braic code. All of these except “@” may be modified by modifiers of

all types. However, the control word modifiers have a somewhat differ-

ent meaning when attached to “~CS” and “@Z”; this is covered in Chap-

ter 5 in the section on calHng sequences, pages 108-110.These special

symbols and their meanings and usage are as follows:

1. @M. This symbol may occur only to the right of an equal

sign, without modifiers. It means, “repeat the quantity to the left of

the equal sign.” For exsmple, the following two expressions are equi-

valent:

AD(X2+GW3) = AD(X2+GE*3)*SN(X3+2)/FN’3

and

AD(X2+GE*3) = @*SN(X3i-2)/FN5

2. #CS. This symbol represents the “caUing sequence data

block” and may appear on either side of an equal.sign, with or without

modifiers. Generally “#CS” is used to convey information to, or to re-

ceive information from, a subroutine. We have already encountered

another use of this block: the low order part of a double precision

result is stored in the location “~CS1.” The “@CS” block is twenty

words long and can be used the same as any data block except that it

should be recalJ.edthat the contents of “$CS” are destroyed by some

-84-

subroutines. Further discussions of “@CS” are found in Chapter 6,

pages 127-129.

3. @z. This symbol, which must always have at least a modifier

of type A, may occur on eitherside of an equal sign. It simp~y means

“supply an address of zero.” Its chief use is in store address expres-

sions of the form

#z(xn+~n, M2)

where the symbol is unimportant, since “An” is the address actually used,

and in subroutines, to refer to entries in a calling sequence, in the

form

@Z(Xn+N, M2).

(“M2” represents either a nu~ field or some type of legal modifier other

than type A.) The usage of “~Z” for the latter purpose is discussed

in Chapter 5, pages 108-110.

4“ @) $w @B~ “““)@Z. These 27 special symbols are shared by

subroutines and are used for internal data. A complete description of

their usage is given in Chapter 5, pages 110-112.

50 IL. The “@L”symbolsprovideaccess to certain special con-

stants and addresses used by IVY. The symbols address the following in-

formation: @Ll = FAC (first address for code); @2 = FAD

for data); ~L3 = NIA (next loading address for code); @!

block address for data); #L5 = 709010 if machine is 7090,

(first address

= NBA (next

703010if 7030;

jh% = number of remark characters per word. #Ll, @i2, ~L5 and #L6 are

-85-

available for testing purposes only. #L3 and #~ may be altered with dis-

cretion, as described in Appendix 1, pages 203-20g.

Statement separation and continuation. As one can observe from

examining the example on page78, IVY statements in the algebraic language

are separated by commas. There may be any number of statements on a card,

of up to 71 characters in length. An algebraic statement can be con-

tinued from one card to the next provided that symbols, literals, symbol

modifiers in parentheses, expression modifiers, and operations of more

than one character (“~j” “+$,” etc.) are complete on one card. These

items which cannot be split from one card to the next are called units

of an expression; thus we can say that expressions can be continued from

one card to the next provided that units of the expression are complete

on one card.

*Blzmks occurring in expressions are always ignored, as we can see
by again referring to the e~ple. Thus blanks may be used, if desired,
to separate units of the expression for easier reading. The carat’’’’”is
used to denote blank spaces on the coding sheet; if more than one blank
is desired, the notation is to write the number “n” of blanks enclosed
in a box, thus: ~. Note that oneneed notusethese conventions to
represent blanks occurring at the end of the card. In general, blanks
are totally ignored on every type of IVY card except the remark card
where they form part of the input data.

Fixed point algebra. The same operations are allowed in fixed

point algebra as in floating point algebra, with some changes in meaning

caused by the peculiar nature of fixed point algebra. These differences

are as follows:

-86-

OPERATION

/

//

.pcx

.$CA

.$R

MEANING

divide, and truncate quotient to integer.

reciprocal divide, and truncate quotient
to integer.

convert fixed point number to expon nt of
?floating point number, i.e., give 2 ‘esult)

in floating point.

convert fixed point number to floating
point number.

take square root, and truncate result to
integer.

These differences are, of course, occasioned by the difference between

floating and fixed point arithmetic. Fixed point arithmetic is the

arithmetic of integers; hence the difference in the divide instructions.

The same operands, with the exception of literals, and with the

addition of symbols for “K” blocks (page 18~, are allowed in fixed point

algebra as in floating point. Literals, of course, must be fixed point

decimal numbers, i.e., a string of digits not containing a decimal

point. In addition, symbols for index registers are allowed in fixed

point algebra; when these symbols are used, the contents of the index

register are used as an operand. When an index register appears in an

expression, there are two modes of operation: immediate and direct.

The “direct” mode is signalled by the modifier “A.” When the “A” is

missing, immediate algebra is assumed; that is, the expression is

assumed to be parameter algebra and is computed according to the values

of the parameters loaded at the start of the deck.

-87-

The same address and expression modifiers are allowed in fixed

point algebra as in floating point algebra. The same conventions are

also used for parentheses, the continuation of statements from one card

to the next, and the use of special “~” symbols.

The following examples of, and notes oqfixed point algebra

should serve to illustrate all necessary conventions.

EXAMPLE N(YTE

ARX(X1+3,A) = VDBC(X3,M) +RX3/AGT5*# 1

AD(l,A) = X3*VXC1 + PAR2 2

AE = x5 + GEwH/3 3

FRN(X2) = 3 + ART(X1)*56-SRTN(X2,@).@A. $Qe5 4

A3.6 =AD(@w) +ADX(XI) +AD@x2) 5

INDEX = Xl - VRN(~WC) 6

NW3!ES:

1.

2.

3*

We note that in this example the “A” modifier is used to spe-
cify fixed point arithmetic, since the expression, containing
only symbols, is ambiguous. Also note the use of the “magni-
tude” modifier and of %$tl to ch~ge the sign of the t?Xp?X?SSiOIh

In this second example the “A” modifier is used in a different
sense, since the expression contains a symbol for an index re-
gister and hence is unambiguous. The “A” is a signal that the
algebra is “direct” or “dynamic,” i.e., the computed values of
the symbols at the time of execution indicated are used in the
algebra.

Here again the eqression involves the contents of an index
register, but since the “A” is not specified, the arithmetic
is assumed to be “immediate” or “static,” i.e., the values of
the specified parameters at the time of assembly are used in
the algebra. This is done by placing the operands directly

-88-

into machine instructions, by using immediate arithmetic
on the 7030 and immediate-type instructions such as “TXI”
on the 7090.

4. In this fixed point expression the “A” is not needed since
the occurrence of fixed point literals makes it unambiguous.
Note that the expression is converted to floating point and
then stored in the “Q” portion of the double-stored block
“FRN,“ having tag length 5.

5. This is an exsmple of the computation of a stored address.
Recall that other examples of this were shown in the coding
example given on page 78. The usual expression for a
stored address includes the control word of a block (from
which the base adtiess is obtained) modified by the addi-
tion of one or more index multiples under the control of
index registers. The philosophy of this technique is dis-
cussed in detail in Chapter 8, pages 168-169.

6. This is an example of an immediate indexing operation in
which the control word count is subtracted from the con-
tents of the index register.

Index register algebra. Although index registers, as we have seen,

can appear in fixed point algebra, true index register algebra differs

considerably

noted by the

equal sign.

from fixed point algebra. Index register algebra is re-

occurrence of an index register symbol to the left of the

The operation set for index register algebra is as follows:

OPERATION

+

.7X

Thus we see that the operation set for index

stricted. However, under most circumstances

-89-

MEANING

add

subtract

if previous result
is negative, set to 1

arithmetic is quite re-

the operation, “*,” for

instance, is not needed since tables of index multiples can be constructed

on “D” cards and used in index arithmetic; and constructing index multi-

ples (done automatically by IVY) is the chief reason for the existence of

a “multiply” operation. If it is desired to load an index from a more

complicated expression, one can first use fixed point algebra to compute

the expression, and then load the index from the location where the re-

sult was stored.

It has been remarked before that index register contents are re-

stricted to positive, non-zero values. Tie purpose of the “.@X” instruc.

tion is to keep the index register contents positive by guaranteeing

that if the result of an expression is negative, a positive result of 1

willbe substituted. The magnitude of index register expressions must

be less than 2
15 18

on the 7090 and 2 on the 7030. Note that if the re-

15suit exceeds these bounds, the number given will be truncated modulo 2

or 2’8 as the case may be.

One modifier is allowed left of the equal sign in index register

expressions: “A” separated from the index register symbol by a period.

The purpose of this “A” is the same as in fixed point algebra when in-

dex registers are present, to specify “direct” arithmetic. Index regis-

ter algebra is always “immediate” if the “A” is not present. Of course,

here as elsewhere, the apel.lations“direct” and “immediate” apply only

to units of the expression other than index register symbols. In either

fixed point or index algebra, the contents of the index register at exe-

cution time form the operand.

-90-

Some examples of index register algebra follow:

EXAMPLE NOTE

xl =X1+1 1

X3.A = AD+3 2

x3 =GE+3 3

X2.A = AE-INDEX.#X 4

NOTES:

1. The contents of index 1 are incremented by 1.

2. In this case, direct algebra is specified by the “A.” The
contents of “AD” at execution time are incremented by 3
and placed in index register 3. Note that “N)” is the sym-
bol for a rather complicated expression illustrated in the
section on fixed point algebra. This example thus shows
how a dynsmic loading of an index register can be performed.

3* Immediate algebra is assumed here, which means that the con-
tents of GE at compiling time, plus 3, are placed in index
register 2.

4. Here the arithmetic is performed in the direct or dynamic
sense, and the index register contents are set to 1 if the
result is negative.

Renaming of an index register. An index register may be renamed

at any point in the code by the use of the “*” convention which was

originally discussed in connection with data blocks on page55.

Usually an index register will be renamed to a single-letter symbol to

save the necessity of writing the two or more characters associated

with every “Xn” symbol. If it is desired to use a symbol of two letters

or more to rename an index register, the symbol should of course have

-91-
●

been defined by its appearance on a “D” card. The format for renaming

an index register is as fo120ws:

*~@L = Xn,

where “SMB@L” represents any single letter symbol (except A, X, or L),

or any symbol of more than one letter which has been previously defined

on a “D” card, i.e., entered

Using what we now know,

index loop. An index loop is

in the symbol table.

let us construct’a simple example of an

specified by placing the values between

which the index is to run, separated by a CO=~ in parentheses afier

the name of the index register, at the beginning of a looPo The end of

the loop is denoted by p~cing the index register symbol in parentheses.

We have encountered other examples of index loops in the example on

page 78, lines 5, 9, and 3-12. The following loop is for the simple

PWOse of constructing the dot product “D” of two vectors “VA” and

“V-B,“ each having three components:

II*I = Xl, D

or, equivalently,

II*I =Xl, D

At least one of the limits of

= 0,1(1,3), D = D +VA(I)*VB(I),(I),...

= 0,1(3,1), D = D +VB(I)*VA(I),(I),...

an index loop must be 1. The other maybe

represented by a literal, as above) or by a s~bol~ as in the e~Ple

on page 78, or by a parameter algebra expression. The operation is per-

formed for the first value of the index, and then the loop is reiterated

after the index has been increased or decreased by 1, until the index

-92-,

I

reaches the final value. If it is desired to construct a loop for which

one of the limits is not 1, or for which the index increment is not 1, or

where the index is to run between computed (as opposed to parameter)

values, other techniques must be used, utilizing the “L “ entry. Examples
n

of this appear in Chapter 5, page 99, and Chapter 8, pages 169-171.

Boolean algebra. Boolean algebra is used for performing logical

operations by obtaining a result involving a bit-by-bit comparison of

two or more operands.

OPERATION

+

*

t

.$U

●*

The set of Boolean operations is as follows:

N(X?E MEANING

1 logical add, sometimes called
“inclusive ‘or’”

2 logical multiply, sometimes
called “and”

3 take one’s complement of preceding

4 give 1 if result is # O

4 give O if result # O, otherwise
give 1.

NCYJ?.ES:

1. The inclusive “or” of two binary numbers is obtained by compar-
ing the numbers bit-by-bit, and setting the corresponding bit
of the result to 1 if either or both operand bits are 1, and
to zero otherwise. For example, the inclusive “or” of
101101011101 and 001011100101 is 101111111101.

2. The “and” of two binary numbers is obtained by comparing the
numbers bit-by-bit, and setting the corresponding bit of the
result to 1 if both bits are 1, and to zero otherwise. The
“and” of the two numbers given above is 001001000101. Note
that the Boolean sum of the exclusive “or” and the “and” is
the inclusive “or.”

-93-

3*

4.

One

The lls complement of a binary number is obtained by replacing
all 1‘s with zeros, and all zeros with 1‘s. For instance, the
1’s complements of the two numbers in note 1 are 010010100010
and 110100011010.

These two operations are the same as
fixed and floating point.

can represent the Boolean operations

the corresponding ones in

graphically, as is illust-

rated below, assuming we have two intersecting regions “A” and “B.”

The result of the operation is the shaded area. We might say that the

area common to both regions corresponds to the

hers which are equal to 1, and the rest of the

differing bits of the binary number. The area

responds to the bits of both numbers which are

bits of both binary num-

area corresponds to the

outside the regions cor-

zero.

A+B A*B A’

From these illustrations a few identities of Boolean algebra become evi-

dent. For instance, the exclusive “or” of two numbers is equal to the

logical sum of the “and” of the first number and the complement of the

second, and the “and” of the second number with the complement of the

first. That is, the fo120wing expression produces the exclusive “or”:

-94-

Y(l,B) =V*(W’) + (W*(V’))

The exclusive “or” of two binary numbers is obtained by comparing the two

numbers

the two

note 1,

and

In this

bit-by-bit, and setting corresponding bit of the result to 1 if

bits differ, and to zero otherwise. If we use the two numbers of

page 93, this can be verified for a particular case:

101101011101 (exclusive “or”) 001011100101 = 100110111000

1011O1O111O1*(OO1OI11OO1O11)+ (OO1O111OO1O1*(1O11O1O111O11)) =

10I101O111O1*11O1OOO11O1O+

100100011000+ 000011000000

(001011100101*0100’

= 100110111000.

case, both results

no proof is offered here.

between Boolean operations

0100010) =

are the same. In general this is true, although

Many other similarly interesting relationships

can be discovered by studying the diagrams.

It is possible to obtain sixteen possible results by combining two numbers

using the IVY set of Boolean operations; these sixteen results make up the

entire set

The

1.

2.

of sixteen so-called logical connective.

following further observations apply to the Boolean set:

The operations “+” and tl*ttare Commutative and associative~

i.e., B+C=C+B, B*C = C*B, and~(B*C) = (~B)*C, etc.

The operation “*” is distributive over “+,” and “+!’
is distributive over “*,” i.e.,

D + B*C = ~C+(B++C);

IMB+C= D + C*(B + C).

The “and” (logical product) of two
one bits than either number unless

-95-

numbers contains less
both numbers are equal;

the inclusive “or” (logical sum) of two numbers contains
more one bits than either number unless both numbers are
equal. The “and” and inclusive “or” of equal numbers
are equal to the two numbers; the exclusive “or” of equal
numbers in zero.

Boolean expressions must always be denoted by the “B” modifier

to the left of the equal sign. The algebra to the right of the equal

sign may contain symbols for Boolean blocks or Boolean literals. Or-

dinarily Boolean expressions should not contain symbols for non-Boolean

quantities unless great care is exercised. While some very useful com-

putations can be carried out by violating this rule, such computations

usually will not work on all machines for which IVY is available, since

the formats of internal words differ. For example, on the 7090, the

following two expressions are equivalent and would compile the same se-

quence of instructions:

ADF(l,A) = AXCG(3+X3) .$CX

and

ADF(l,B) = AxCG(3+x3)*377000000000,uF(I,A) = Al)F/(2**27)- 129,*

whereas on the 7030, the latter expression will definitely not do the

same as the former, because of the differing word lengths and floating

point formats on the two machines.

*
In the last expression, “@l” can be used instead of “ADF” on the right
of the equal sign, if desired.

-96-

CHAFFER‘j

FIOW OF CONTROL, CALLING SEQUENCES, AND THE EXECUTE STATEMENT

L-entries. “L-entry” is the term applied to the use of a numbered

“k” symbol for branching purposes. An “L-entry” may be used for both

conditional and unconditional branching. In the algebraic language the

entry point is marked by the occurrence of an “In” symbol between commas

(for longhand conventions see Appendices 2 and 3). Unconditional branch-

ing to the statement

by the occurrence of

immediately following this entry point is specified

the same “Ln” symbol in parentheses between commas.

This branching may be performed in either a forward or backward direction,

thus:

....(h) (,~~. algebra)...
7

Ln,....(algebra)...
J

●..*.,

1

flow of control

......(Ln)....(algebra)...

An entry of “Ln” between commas for a particular value of

only once in a given formula. Conditional branching to a

“n” can occur

given “In” entry

is specified by the entry of “h” in parentheses, followed by a modifier,

-97-

if

the

the

necessary, specifying the tme of algebra used in the e~ression tO

right of the right parenthesis. If the given condition is satisfied,

branch is performed. Otherwise, control proceeds to the next algebraic

expression. The general format is as follows:

,(b, M)Algebra = C,

where

1. “h” represents the entry to which branching is to be
performed.

2. “M” represents one of the modifiers “A” (for fixed
point), or “B” (for Boolean), if necessary to spe-
cify the type of algebra to be performed in the
following expression. “M” and the comma preceding
it may be omitted if the algebra is unambiguous
according to the tenets of Chapter 4.

3* “Algebra” represents any machine algebra expression.

4. “C” represents one of the following conditions:

c

ZorO
NZ
GZ

Iz
Z.G
ZL
P
M

CONDITION

branch if result
branch if result
branch if result

than zero
branch if result
branch if result
branch if result
branch if result
branch if result

is zero
is not zero
is greater

is less than zero
is zero or greater
is zero or less
is plus
is minus

Examples. An examination of the coding example in Chapter 4,

page 78, will reveal an unconditional branch on line 11, and conditional

branches on lines 3, 7, 10, and 12. The “Ln” entries to which branching

is performed are on lines 6, 12, 14, and 15. Note how the flow of control

-98-

is marked by arrows.

The following example also makes use

“Ln” branching. This exsmple performs the

of conditional and unconditional

matrix multiplication of the

I X J matrix “MA” times the J X I matrix “MB” and stores the I X I result

into “MC.”

LineNo. I 2 I 72 CODE
NOTES

I c MATRIXnMULTIPLY AROUTINE

2 II I XI =1, X2=I, X3=I, K(I,A)=I* J,M(l,A)=I!t*2, 11111I

3

4

5

6

7

8

9

10 I

IWms :

1.

2.

+
LI, MC(X3) =0,

L2, MC(X3)=$M+@A(Xl) *MB(X2)), II
1-

XI=XI+I, X2= X2+I, (L2,A)XI-K=*L,

I - —X3= X3+ I, (L3,A)X3-M=G* +

XI.A:XI-K+I, (L4)XI-I=GZ,

XI= I,(LI),

. L4, X2=X2-J, (Ll),
I

I I L3,... (Code continues)

2

3

3,4

5

6

6 I

6

I

All three index registers used in the code are initialized to 10
The quantities “K” and “M” are computed for later use in index
comparison, since, as we recall, the operations “*” md “+++”
are not allowed in index algebra. The “A” modifier is neces-
sary in both since the algebra is smbiguous. There sre no
literals present to distinguish the expressions from floating
point.

The current element of matrix “MC” is initialized to zero
before computation begins, since the result is computed in a
cumulative fashion.

-99-

3* The current element of matrix “MC” is increased by the
products of the appropriate elements of “MA” and “MB.”
Then the “MA” index, Xl, is increased by I, and the
“MB” index, X2, by 1, since we are proceeding through
a row of “MA” and a column of “MB.” Note that the in-
crement of Xl is by a parameter, and X2 by a literal;
hence both operations are immediate and the “.A” modi-
fier is not needed.

4. We proceed back to increment “MC” again if the row of
“MA” is not yet exhausted. Note that the “.A” modifier
is used here to specify direct, or dynamic, index alge-
bra in the test of Xl since “K” is a computed quantity.

5* If the row of “MA” is exhausted, the index for “MC” is
incremented by 1. (We are computing “MC” column-wise).
If “MC” is exhausted, exit is made to “L3.” Note again
the use of “.At’to specify dynamic index algebra.

6. Xl is now incremented backwards so that “MA(X1)” will
start the next row in “MA.” If “MA” is exhausted, we
start over at its beginning but proceed to the next
column in “MB.” If “MA” is not exhausted, we proceed
to its next row, but use the ssme column of “MB.” Note
that the “.A” modifier is not used when 1 and J are in-
volved, since these quantities are parameters, being
array dimensions, and hence can be used in immediate
arithmetic.

It should be noted that the above example is included for illust-

rative purposes only, and is not intended to demonstrate the best pos-

sible technique for multiplying two matrices. The method illustrated is

used only because it is a familiar one.

Restrictions on L-entries. As has been mentioned before, L-entries

are purely local entities within a formula. Branching from ofleformula

to another by means of L-entries is prohibited. An L-entry in a formula

to which no branch is performed, and a branch to a non-existent L-entry

are detected as errors, and a diagnostic printout is performed. If exe-

cution reaches the point where a branch to a non-existent L-entry occurs,

-1oo-

and the branch is successful, IVY takes control, prints a comment to the

effect that execution cannot proceed beyond this point, and selects the

card reader or off-line tape in an attempt to process the next job, if any.

Pathfinder branching. Pathfinder branching is a means of controlled

entry to subroutines,when a subroutine is entered from several points in

the code and return must be made to whichever point that performed the

entry. This is done by using the pathfinder register, called “~P.” When

a pathfinder branch is made, the location from which the branch occurs is

stored in the pathfinder. The subroutine, then, can load the contents of

the pathfinder into some available index register and return by branching

using this index register. The format for a pathfinder branch to an L-

entry subroutine is as follows:

Note

“Izl”

,(~P,Ln)j

that the pathfinder branch is unconditional. The subroutine named

begins with the entry:

,Ln.xm,

where “Xm” is the symbol for the index register into which the pathfinder

contents are loaded. The subroutine then ends with the entry

,(xm+l),

where “Xm” is the same index register which was loaded with the pathfin-

der contents. This entry causes control to return to the expression

-1o1-

I“ollowingthe pathfinder branch to the subroutine.

Examples of a pathfinder branch and subroutine.

several points in a formula we calculate a quantity “Y”

Suppose that at

and we wish to

evaluate a polynomial “Z” of

efficient of the polynomial

of the variable in the block

might look as follows:

Nth degree for this “Y.” Assume the co-

are stored in order of decreasing powers

“c.“ If the subroutine is called “L5,”it

1111I L5.X4,3=0 11111
XI (I,N), Z=Z*Y+C(XI), (XI),

I H-+ .
xit-- (X4+1), 11111

The contents of the pathfinder are placed in X4. The polynomial is then

set to zero initially, and then each time through the loop, it is multi-

plied by “Y” and increased by the next coefficient. After the evalua-

tion loop is completed, the exit is performed to (X4-+1). Note also that

the exit from a subroutine must be unconditional.

Formulas and formula branching. As has been remarked previously,

a formula is a subset of a formula set. The name of a formula is de-

fined solely by its appearance on an “I” card and must not have been de-

fined on a “D” card. The format for entry of a formula name is the same

as for an

depending

L-entry, namely,

,F@M, or, F@M.Xn,

on whether or not the formula is entered by a pathfinder

branch. “F@M” represents any legal symbol not previously defined, and

-102-

“xn”any

take any

free index register. Similarly, branches to a formula entry may

of the following forms:

BRANCH TYPE

,(F@?M), unconditional

,(F@4jM)Algebra = C, conditional

,(#P,F@M), pathfinder

A formula may be a subroutine accessible to any formula within the same

formula set, just as an L-entry can be a subroutine within any formula.

An example of a formula which is a subroutine is the formula “MX” of the

example in Chapter 4.,page 78. This formula

and we see that

turn is made by

,(@P,Mx),

the contents of the pathfinder

the usual entry

is entered by the instruction

Formula sets.

the name of a formula

,(X9+I),

are

The name of a formula set is

by the fact that it has been

A formula set consists of one or more formulas.

lection of formubs, a formula set may contain a

entry to its various formulas, as well as one or

formula

sets is

sets. The format of a formula set entry

the same as for formulas, namely:

-103-

pkced in X9, and re-

distinguished from

defined on a “D” card.

In addition to its col-

short code controlling

more branches to other

and branches to formula

ENTRY

,FS,

,FS.Xn,

BRANCH

,(FS,M)Algebra

,(FS),

,(@P,FS),

TYPE

= c, conditional

unconditional

pathfinder

There are no restrictions on branches

may be forwards or backwards, and any

to any other formula set. Of course,

is performed must be converted and in

to formula sets. These branches

formula set may contain a branch

the formula set to which the branch

core for the branch to be legal;

otherwise, if a successful branch to a non-existent formula set is en-

countered, IVY regains control, prints out a comment, and begins search-

ing for the next job.

The “jump” feature for formulas and formula sets. We first en-

countered the “jump” feature in connection with the definition of data,

page 5$. The “MX]’code in Chapter 4, page 78, illustrates this feature

in connection with formulas and formula sets. Using this convention,

one can skip the assembly of

entered in a particular run,

this entry is as follows:

any formula or formula set which is not

under parameter control. The format for

IIF.fi,(@)P = C,

where “P” represents parameter algebra and “C” represents one of the

fsmiliar conditions. If the condition is satisfied, the assembly pro-

gram “jumps” to the next formula or formula set without assembling the

-104-

current one. Unlike the use of “@J” with data, a second “~J” is not

needed in code, since the assembly program detects the end of the “jump”

field by detecting the name of the next formula or formula set as the

case may be.

Calling sequences in code. Any pathfinder branch to an L-entry,

formula, or formula set may contain a calling sequence. The calling

sequence consists of items of information separated from each other by

colons, each entry between colons representing a full word. These en-

tries are described in detail in the treatment of the “K” card, Chap-

ter 3, page 64. Calling sequence word entries follow the pathfinder

branch in parentheses, separated from it by a colon in the following

format:

,(ZP,SUBR: CSI: CS2: CS3:...: CSN),

where “CS1,” “CS2,” etc., represent calling sequence word entries. The

symbols in calling sequence word entries can refer to data, remarks, or

calling sequence blocks defined by “K” cards. IVY internal symbols

starting With’’$”cannot appear in calling sequence word entries because

of the near impossibility of distinguishing between them and the “$XXX”

entry. A description of addressing conventions for calling sequence

words follows the next section.

Returns to a calling sequence. If a calling sequence on instruc-

tion cards contains N calling sequence word entries, return is made to

the expression following the calling sequence by the branch

where “xn”is

der contents.

sequence word

,(Xn+N+ l),

the index register which has been loaded with the pathfin-

Thusj if a pathfinder

entries, the return is

branch is not

effected by

followed by calling

,(xn+1),

as shown earlier in this chapter.

Sometimes a subroutine may have more

case being when there is an error exit and a

than one exit, the simplest

normal exit. Any time a sub-

routine has, say, M exits, the M-1 expressions after the calling-sequence-

pathfinder branch expression must be simple pathfinder branches to rou-

tines which handle these extra cases. This is to ensure that the extra

returns comprise full words in all cases. On the 7030,pathfinder

branches comprise full words, while most other branches do not. For exam-

ple, suppose “MATIN’V”is a matrix inversion routine which has two exits,

the first an error exit if the matrix is singular, and the second, a nor-

mal return where the inverse has been computed. The calling sequence

would then appear as follows:

($P,MATINV: AD(~W): AE($W)), (@P,ERR),...(computation proceeds)

where “AD” is the square matrix of which the inverse is desired, and “AE”

is the block where the inverse is to be stored. “ERR” is a routine which

handles the erroneous case when the matrix is singular. The error return

is marked by the full-word pathfinder branch to “ERR.” The subroutine

-106-

exits to the error return by the entry

(Xn+ 3),

and to the normal return by the entry

(Xn + 4),

where “X “ is the index register containing the pathfinder contents.
n

Another example of a “calling sequence” with several returns is

the transfer table. A transfer table is essentially a calling sequence

made up entirely of pathfinder branches, each representing a branch to an

alternative subroutine. Which entry of the transfer table is used de-

pends on the value of some quantity, either a parameter or a computed

value.

I

I

I

I
I

“GM”

this

II

II

I

I
II

The following example illustrates the usage of a transfer table:

I ($P,LI),

>
($P,SA),

* ($P, S13),

*
($P,SC),

*
($P,SD),

*
($P,SE),

*
($P,SF),

-LI.X3, X3=X3+GM,(X3+I),

l’ I

1111

11/1

1111

1111
1111

may take on one of the values O, 1, 2, 3, 4, or 5, and depending on

value, one of the pathfinder branches to the routines “SA,” “SB,”

etc., is executed. In this case, as in every case where a subroutine

-1o7-

has more than one exit, the various alternative returns contain pathfin-

der branches.

Addressing calling sequence word entries from within the subroutine

using them is done by using the symbol “~Z” modified by the pathfinder in-

dex register and a parameter algebra expression. An additional modifier

expression may be separated from the first by a comma, to make it possible

to extract either the “@C” or “@WA” portion of a calling sequence word.

For example, consider the matrix inversion routine whose calling sequence

was given in the previous section:

(#P,MATINv: @@4): m(#w)),(@,mR),...

In this subroutine it will be necessary to have both the count and the

base addresses of these matrices in index registers in order to proceed.

We shalJ also need the square root of the count of the matrices to show

the row and column size. This can be done by the following sequence of

instructions:

,,,!,

I MATINV. X5, XI=SZ(X5+I,$WC), I

X2=$Z(X5+I,$WA), X3=$Z(X5+2,$WA), 111112

x4= $2(x5+I,$wc1.$cA. $R.$cA,... 3.

NOTES:

1. The pathfinder contents are placed in X5; then the count of
the first calling sequence word, i.e., the count of block
“AD,“ is placed in Xl. We do not worry about the count of
“AEt’since presumably it is the sane.

2. The base addresses of the blocks “AD” and “AE” are placed
in X2 and X3, respectively. Note that although the “#WA”—
modifier can be used, its appearance is not necessary, since
normally an index register is loaded from the “#WA’’portion
of a calling sequence word, unless overruled by “#WC.”

-1o8-

3. The count of the block “AD” is converted to floating point,
its square root is taken, and it is then converted back to
fixed point and placed in X4.

Actually, a great deal of work can be saved by constructing the

calling sequence to “MATINV” in a more efficient manner. The above ex-

ample was included only for illustrative purposes; a better way of con-

structing the calling sequence and the first few orders of “MATINV” is

as follows:

I

I
,

The

row

the

and

In

as

be

Ill

HI
Ill

I ($P, MATINV:AD(SWC): AD(SWA):AE($WA):I),($P,ERR),
..
.

I MATINV.X5, XI=SZ(X5+I),

X2=$*(X5+2), X3=$*(X5+3),

x4=$*(x5+4),...

11111

11111
1 1111

ssme index registers are loaded with the same quantities (“I” is the

or colunn dimension of “AD”); the only difference now will be that

exit from WINV to the error return is:

(x5 + 5),

to the normal return:

(x5 + 6),

general it is good practice to make calling sequence words as simple

possible, even if more space is consumed, since the manipulations may

greatly simplified and therefore a less probable source of error.

Subroutines with variable-length calling sequences can also be con-

structed by the programmer, either by placing the calling sequences on

-1o9-

“K” cards or, with more care~ Phcing them (as above) on “I” cardsO

Some further examples of this are contained in Chapter 8, pages 176-183,

and will not concern us here.

Usage of the’$D” blocks. The twenty-seven “#D” symbols (#D,

#DA,#DB,...,@DY,#DZ) permit different formula sets toshare the same

set of symbols, which, however, can unambiguously be assigned different

values, addresses, and lengths in each fo?nnulaset in which they are

used. Generally “~D” symbols are specified in formula set subroutines

which are to be used by several different programs, in order to avoid

using regular alphabetic symbols and thus running the risk of having

symbols which may conflict with some of the symbols used by a particular

code containing the subroutine.

One formula set cannot reference, either directly or indirectly,

the “~D” blocks of another formula set. Thus a subroutine can safely

use its “ID” blocks for necessary constants and/or temporary storage,

without the fears that the constants will be destroyed by another rou-

tine and that its own references to these blocks will destroy another

routine’s data.

“@D” symbols may participate in algebraic expressions like

alphabetic symbols, with the following exceptions:

1. The modifiers “SW” and “~WP” are not allowed follow-
ing a “$D” symbol.

2. The modifiers “$WA” and “@WC” are allowed only in=-
mediate index arithmetic expressions involving the
‘~~bol.

3* “@D” symbols must never occur in calling sequences;

-11o-

they cannot be distinguished from the “SXXX” calling
sequence entry.

4. “~D” symbols may not appear in parameter algebra
expressions.

“~D’’blocks are definedon “I” or “L” cards much the same way as

data blocks are defined on “D” cards, but with considerably more restric-

tions. Definition of “~D” blocks on “L” cards is discussed in Appendices

2 and 3 in connection with longhand instructions. On “I” cards, the de-

finition of “~D” blocks must occur immediately after the entry of the

name of the formula set in which they are used, as follows:

I FSNAME.Xn,...”~D” definitions

... Code continues ...

Thus all “#D” symbols used in a formula set must be defined between the

entry of the formula set name and the first algebraic expression in the

code. Symbolically, “SD” definitions may take on one of the following

forms (where X represents any letter of the alphabet or a blank):

1. ~DX= N, where “N” is a fixed or floating point literal
or a parameter algebra expression. ‘l’hisis equivalent
to the definition and loading of an array of length one
discussed at the beginning of Chapter 3.

2. @DX(P), where “P” is a parameter algebra expression.
This entry sets aside a vector of length “P” and assigns
to it the symbol “#DX.”

3. @X(l’1,p2,...,P), sets aside an n-dimensional block of
‘*Pn and assigns to it the symbol “$DX.”length P1*P2*...

4. $DX(P) = Q1,...~, or $DX(P1,...,Pn) = Q1,ooc~, both de-
fine and load the vector or array specifzed. The’’Qi”may
take on only the following forms: fixed point literal,

-111-

floating point literal, parameter algebra expression, set
~~cI~:IO zero expression “(Z)P,” or skip words expression

.

59 *@x . s~#L, where “SYMB@L” represents some alphabetic
symbol previously defined on “D” cards. This is the fa-
miliar “equivalence”feature, making the “$DX” block spe-
cified equivalent to the block named by “SYMB@~’ Other
features of data entry, such as interpolations, multiples,
repeats, double-storing, etc., are not allowed in the en-
try of “@D” blocks. The equivalence feature, however,
permits sophistications like this where necessary.

+G~ handles “@” blocks as follows: when a formula set name (iden-
tified as such by its previous occurrence on a “D” card) is encountered dur-
ing assembly, the “#p” control words are set to zero. If definitions of
“~D” symbols then follow the fomla set name, control words are const~cted
for the blocks defined, in the same manner as is done for symbols on “D”
cards, space is allocated, and loading (if any) is performed. The control
words thus constructed are now used in the assembly of the formula set to
compute the proper addresses for instructions which refer to the “$D’]blocks.
Each formula within the given set thus has common access to the “@D” blocks
defined for this set, but no formula outside the set can reference these
“$D” blocks.

For example, let us consider a formula set which consists of a matrix

multiply routine similar to that considered above, page 99. Let us call

the routine MATMPY. Its function will be to multiply the two matrices “MA”

and “MB” (the first of

“MC.“ We shall define

which has dimensions I,J), and place the result in

the calling sequence as follows:

(@P,MATMPY:MA(@WA):MB($WA):MC(#WA):I:J),

A routine which will perform the required matrix multiply is:

I

I

I

I

I
I

I I :

I *

I

I I :

I + :4exit------

Ill

iATMPY. X4, $D(5) , $DI=XI, $D2 = X2, $D3= X3 ,

(1=1, X2=l, X3=l, $D(4, A)=$Z(X4+4) *~(X4+5),

twllOE

I

2 II
)D(5, A)= $Z(X4+4)**2

112111
&l.3=$Z (X4+3), A2. I = $Z (X4+2), A3. I=SZ (X4+1), 11411
.I, SZ(X3+AI)=0 4

.2, SFk(X3+Al) =$ Z(XI+A2) *SZ(X2+A3)+$M, 111114

(I= XI+$Z (X4+4), X2=X2+1 , 5

:L2)XI- SD4=ZL, X3= X3+I, 111115

L3)X3-SD5 =GZ, XI= XI-$ D4+I,
I

[L4)XI- SZ(X4+4)=GZ, XI’1,

(Ll),

L4, X2= X2-$3 (X4+5),(LI),
-

5

5 II

5

5 II
L3, XI= SDI, X2=$D2, X3=$D3, (X4+6),

NUTES:

1. The block “#D” is defined as being five words long.
Xl, X2, and X3 are stored in the first three of
these words. It is assumed that “MATM.PY”is a for-
mula set name.

2. I*J and I**2 are computed as in the previous example,
and “A” is specified since the arithmetic is ambiguous.
Floating point and Boolean numbers can be entered
in a calling sequence.

3. Examples of “store address” expressions. The base
addresses of “MA,” “MB,” and “MC” are pieked up from
the calling sequence and stored properly.

-113-

4. Matrix “MC” is evaluated.

5. Index registers are altered and conditional branches are
performed. “A” must be specified in all cases where
dynamic modification is desired.

6. Xl, X2, and X3 are restored and exit from the subroutine,
to (X4+6), is performed.

Some final notes on the organization of instructions. The block

diagram below should serve as an illustration of how a typical.IVY code

should be organized:

FORMULA SET FORMULA SET FORMULA SET
I

a m . . .
2

~
N

I 1 I I
. . .

I !
.,.

1
FORMULA FORMULA FORMULAS FORMULAS

I L

I
I

,..
1 1

.,.
I

L-entries L-entries
L-entries for each for each

formula formula

“Horizontal”branches are allowed between formula sets, formulas in the

same set, and L-entries in the same formula. “Vertical” branches are al-

lowed between a formula set and its formulas, and between formulas and

their L-entr2es. “Diagonal” one-way branches are allowed between

-114-

formulas and formula sets, and L-entries and formula sets or formulas in

the same set. This diagram is a summary of all that has been said pre-

viously on the hierarchical organization of an IVY program.

*Before assembly, fo~ula sets are written on a tape under control

of an “A” card. Each formula set may be written separately, or a number
of formula sets may be written together, as desired”. The entire code
may be assembled at one time, or the various portions may be assembled
when they are needed. Even a code which contains too many instructions
to fit a given machine may still be assembled and executed a package at
a time. Practical examples on the usage of these features are included
in Appendix 1.

The eXt!CUte instruction. The execute instruction is the only entry

allowed on “I” cards which has not yet been discussed. This instruction

is an alternative way to cause IVY to transfer control to an assembled

code without using the “X” card. The execute instruction may appear as

the very last statement in a formula set, and when encountered by the

assembly program, it causes IVY to give control to the formula set or

to a formula in the set just completed. The format is as follows:

, $E.sYM13@L,

where “SYM’BqL”represents the name of any previously converted formula

set, or of a formula in the formula set which has just been assembled.

*S2!EE2Z” The purpose of this chapter has been to introduce the
programmer to the various IVY branching conventions and to the organi-
zation of an IVY program, and in connection with this, such topics as
calling sequences, transfer tables, the manipulation of calling sequence
words, the “#D” symbols for subroutine data, and the execute instruction,
Our discussion of the IVY algebraic language is now complete except for
the coding examples in Chapter 8. Table IV summarizes the types of IVY
branches and entries discussed in this chapter and Chapter 4.

-115-

1.

8..

b.

c.

d.

e.

f.

g.

TABLE IV

IVY BRANCHING CONVENTIONS

Types of entries:

ENTRY MEANING

,Xn(A,B), Index loop entry

L9 n) Iacal or L-entry

,Ln.Xn, Iocal or L-entry
subroutine

,#oRM, Formula nsme

,FORM.Xn, Formula subroutine

,FS, Formula set name

,FS.Xn, Formula set subroutine

2. Types of branches:

BRANCH

a. ,(Xn),

b. ,(Ln),

c. ,(Ln,M)

Algebra = C,

d. ,(#P,Ln),

e. ,(F@M),

f. &@lM&M),
= c,

TYPE

End of index

Unconditional

loop

L-branch

Conditional L-branch

Pathfinder L-branch

Unconditional branch
to formula

Conditional branch to
formula

PAGE

92

97

101

102

102

104

104

PAGE

92

97

98

101

103

103

TYPE OF
BRANCH NEEDED

a-a.

2-b, 2-c

2-d

2e,2-f

2-g.

2-h, 2-i.

2-j

TO ENTRY
OF TYPE

1-a

1-b

1-b

1-c

1-d

1-d

-I 16-

TABLE IV (Continued)

BRANCH

go ,(@,@RM),

h. ,(FS),

i. ,(FS,M)
Algebra = C,

j. ,(?p,FS),

k.)(xn+ 1),

,~~n+N+ l),

TYPE

Pathfinder branch
to formula

Unconditional branch
to formula set

Conditional branch to
formula set

Pathfinder branch to
formula set

Subroutine exit

Subroutine exit if path-
finder branch followed
by N calling sequence
words

PAGE

103

104

104

104

101

106

TO ENTRY
OF TYPE

1-e

1-f

1-f

1 -g

return to 2-d,
2-g,2-j

-117-

tered

cases

CHAPTlm6

IVY SUBROUTINES

Any of the IVY “~” subroutines described in this chapter may be en-

by means of a pathfinder branch from the coder’s program. In some

the routines require a variable length calling sequence; when this

is so, it is to be understood that the calling sequence can occur either

in the code, as follows:

or on a “K” card,

quence block must

,(@P,@@UT: Calling sequence),

in which case the symbol representing the calling se-

appear in the instruction

,(~P,$R@T: SYMB@L (@WP))

calling sequence, as follows:

The two

are the

calling

techniques are equivalent provided that the two calling sequences

same. Thus, when in the description of a particular “@” routine,

sequence entries are described, it is understood that these en-

tries can appear either between colons after the pathfinder branch on the

instruction card, or between colons on a “K” card which is addressed by

a single calling sequence word entry after the pathfinder branch.

-118-

A. The loading program. The loading program “@D” has no calling

sequence and is entered by a simple pathfinder branch:

,(j4P,j41Jl),

“j?!ID”is the program which reads in cards from the on-line reader or the

off-line input tape, recognizing and treating all the various types of

IVY cards described in Chapter 2. If an end-of-file condition occurs in

the reader or on tape, IVY halts after printing an appropriate comment.

The use of the loading program is twofold:

1. To read in new data, on “E” cards, to read in and/or assemble
new code, to read in an “$” card and halt temporarily, etc.
In this case control is returned to the expression immediately
following the pathfinder branch to “@ID” in the programmers
code when an “X” card with columns 2-72 blank is encountered,
or to some formula set if an “X” card containing the name of
this formula set is encountered. Control may also be returned
if a “~E” entry is encountered in a formula set being con-
verted, as described in Chapter 5, page 115.

2. To exit from a program when its execution has been completed.
The last executable instruction in any IVY code shouldbe a
pathfinder branch to “@IiD,”in order to read in any program
stacked behind the current one, or to halt if no such program
exists.

B. The assembly program. The assembly program “@P” can be entered

internally to avoid reading an “A” card through “j!!LD.”However, under

programmer control “#AP” will read only, and wild not write on tape. The

calling sequence for “@iP” is:

(@P,@P: Calling sequence),

where the calling sequence may occur in the parentheses or on a “K” card,

provided that in the latter case only the name of the “K” card and the

-119-

j&DN,F

means “read”; “N” is a hexadecimal e~ression
number; and “F” is a parameter algebra expres-
file number on tape “N.” If N = O, the systems

modifier “@P” occur in the parentheses following the pathfinder branch

to yiw.” The cal~ng sequence to “@lP” may consist of any number of en-

tries, each consisting of one calling sequence word, as follows:

where: “@”
for the tape
sion for the
tape (equivalent to N = A) is used.

Any number of files on the tape maybe read and converted using “@P”;

however, IVY will give up control to any formula set which ends with an

execute statement, as mentioned at the end of the previous chapter.

Table V shows the correspondencebetween the tape number “N” and

channel and tape numbers on the IBM 7090. These correspondences hold

for both “@lP” and “@P.” Also noted are the tapes which are reserved

for the various types of off-line output. These tape numbers may not be

used by “#Al?”or “~TP” (see next section) unless precautions are taken

to protect the output of previous jobs which may be on these tapes.

CORRESPONDENCE

TAPE
NO.

TABLE V

BETWEEN IVY TAPE NUMBERS AND 7090 TAPE NUMBERS

7090 RESERVED FOR USE (IF ANY)

o A2 Assembly, if no other specified
1 Al IVY system (high density)
2 A5 None
3 B3 None
4 A4 None
5 BI None
6 B2 None

-120-

TABLE V (Continued)

IVY TAPE
NO. 7090 RESERVED FOR USE (IF ANY)

7 A6 None
8 B6 BCD Input, for reading decks off-line

9 A3 BCD Output (print & punch, high density)
A A2 Assembly, if no other specified
B B4 None
c B5 4020 Output (plot & print, low density)

On the IBM 7030, tape numbers 1-F can be specified. However, no

list of corresponding absolute channel and tape numbers can be given

since these are assigned by IVY on the basis of available tapes and the

requirements of other programs. In general, the programmer or operator

will be notified of these assignments via the console typewriter in ad-

vance of the time they are used by the program, so that tapes may be pro-

perly mounted and the dials set in plenty of time.

c. Tape manipulation program. “#TP” is a program allowing com-

plete flexibility in manipulating binary (i.e., odd parity) tapes. Its

features include reading, writing, spacing forwards or backwards, posi-

tioning, setting density, rewinding, unloading, writing end-of-file, and

testing the current tape, all under control of various calling sequence

words. The calling sequence is designed

ing sequence word, as a rule, represents

to a particular tape unit.

*For the benefit of those who are
tion, a short summary is included here.

in such a manner that each call-

one simple mnemonic instruction

not familiar
The shortest

tion-written on a tape is a record, consisting of one

-121-

with IBM tape opera-
block of iIlfOIYIl&&

or more words of

data, and separated from other records by a gap in the tape called the
end-of-record ~. Records, in turn, may be gathered together into.——
files; files are separated from one another by a record consisting of
a special character followed by a long gap on the tape, called the end-
of-file gap or simply the end-of-file. In addition, IVY marks the end..—
of the tape with a special record called the end-of-tape record, con-——
sisting of one word containing special information and an end-of-file.

Each record read or written by “@P” must be preceded by an iden-

tification word, called the “ID.” Each record in a file must have an ID

different from

tate searching

particular ID,

the other records in the same file, in order to facili-

procedures. When “@P” is searching for a record with a

it searches only the file in which the tape is positioned

when this record is requested. In no case wilJ “@P” ever read beyond

the end-of-tape record, or write beyond the end-of-tape reflective strip.

The calling sequence to “@P” may consist of any number of entries,

each of which may be any one of the following:

10

2.

39

40

5.

6.

7.

@DX, where “X” is a tape number in hexadecimal, 1 < X < C on
the 7090, 1 ~ X ~ F on the 7030. This causes tape ‘X” ~o be
set to high density (556bits per inch).

@DXO Tape “X” is set to low density (200 bits per inch).

$RWX. Tape “X” is rewound to the load point. (Identical to
performing manua13ythe operations of pressing the “reset,”
“load rewind,” and “start” buttons on the tape unit.)

@LX. Tape “X” is rewound to the load point, the upper head
assembly is raised, and the tape is removed from the vacuum
columns. (Identical to performing manually the operations of
pressing the “reset,” “load rewind,” and “unload” buttons on
the tape unit.)

@FX. Write an end-of-file mark on tape “X~’

$?I’X. Write the end-of-tape record on tape “X,”
space the tape to

#BBX,P, where “P”

and back-

expression.

the beginning of this record;

represents a parameter algebra

-122-

This instruction causes tape “X” to backspace through “P”
blocks or records, where an end-of-file is counted as a
record. Error indication is given if “P” is large enough
to cause the tape to attempt to backspace through the
load point. If P = O this instruction is ignor~d.

8. j?h?X,P. Tape “X” is backspaced over ‘%” files, where the
count “P” includes the current file. The tape is then po-
sitioned to read the first record of the file located.
Error indication is given if “P” is large enough to cause
the tape to attempt to backspace through the load point.
IfP= O,this instruction is ignored. If P = 1, the tape
is set to read the first record of the current file.

90 $m3X,l?. Tape “X” is spaced forward over “P” blocks or re-
cords. Error indication is given if “P” is large enough
to cause the tape to attempt to space forward through an
end-of-file, or if the tape is positioned at the end-of-
tape record. If P = C, this instruction is ignored.

10. @FX,P. Tape “X” is spaced forward over “P” files, where
the count “P” includes the file in which the tape is cur-
rently positioned. An attempt to space beyond the end-of-
tape record will cause an error indication. If P = 0,
this instruction is ignored.

11. @DX,AD(@A)+P, where “AD” is any programmer symbol and “P”
is a parameter algebra expression. This entry may occur
only at the end of a calling sequence. The ID of the re-
cord at which tape “X” is positioned is compared to the
contents of the location specified by “AI)(@WA)+P,”and if
the two are equal, @CSl is set to 1. If they are not
equal, #CSl is set to 00 The tape remains positioned to
read this record.

NOTE: The next two entries each consist of a pair of calling
sequence words.

12. @DX,AD(#WA)+P: AE(@WP). “@TP” attempts to find the record
in the current file on tape “X” with ID equal to the con-
tents of “AD(@WA)+P,” and if successful, reads the record
into block “AE.” The current file is scanned twice in an
attempt to find the record with the specified ID, so to
save time the programmer should attempt to position the
tape at the proper record before @ving the “read” command.
If the proper record cannot be found, error indication is
@ven and “@P” relinquishes control to IVY, which selects
the card reader or input tape in an attempt to find the

-123-

next job. “@P” does not return control to the programmer’s
calling sequence, since the lost data may have been essen-
tial to the program. The block “AE’*must have a non-zero
count and base address, and the count of the record read from
tape may not exceed the count of “AE.” Otherwise, error in-
dication is given and IVY takes control. (Using option 11
plus the proper spacing instructions the programmer can easily
locate the proper record before reading it.)

13. m, AD($JA)+R AE(@Jp)o A record is written on tape “X,”
starting at the point where the tape is positioned, and con-
taining the ID specified by “AD($WA)+P” followed by the con-
tents of block “AE.” If tinephysical end-of-tape is sensed
at any point in the writing of this record, the tape is back-
spaced to the start of the record, an end-of-tape record is
written, and the machine halts after printing a comment to
this effect. When a new tape has been mounted, and “start”
(7090)or “console signal” (7030)has been pressed, “@P”
will write the record on the new tape. The programmer should
note that when a new record is written on a tape containing
other information, any of the old information beyond the new
record will become unreadable. Thus, the new record should
be written after any information that is still needed.

14. $*. This calling sequence word causes parallel operation
to take place during all the tape operations specified in
subsequent calling sequence words until “$S@” is encountered
(see below). By parallel operation it is meant that the tape
input-output will proceed in parallel with computation. This
entry should be used only in those cases where subsequent
computations do not depend on the results of the operation
e.g., when subsequent computations do not address a block
which is being read in or written, etc. Care should be exer-
cised in the use of this entry, since it makes detection of
R’l?Iand end-of-tape somewhat more difficult.

15. pkg. This calling sequence word specifies serial operation,
i.e., each input-output instruction is completed before the
next is initiated, and all operations are completed before
“@P” returns control to the pxxxgsmerts code. If neither
“#S@” or “@P@” is specified in the calling sequence, serial
operation is always performed.

*Detection and treatment of errors by “@P. “ Two types of errors
are detected by “$TP”: Errors arising from the tape unit itself (re-
dundacy errors), and progrming errors. These are treated as follows:

-124-

1. Redundancy on writinq: A backspace is performed and an attempt
is made to rewrite the record. If no error is detected on the
second writing, “j!TP”proceeds without error indication. If a
second redundancy error is detected, error indication is given,
a gap is erased on tape, and a third attempt is made to write
the record. If this atlxmpt is still unsuccessful, the machine
stops after printing a comment that the tape is defective and
should be replaced. After the tape has been replaced, press
“start~’or ‘~consolesignal~’and the program wi~ proceed.

Redundancy on reading: At most ten attempts are made to read
the faulty record. If all are unsuccessful, an error indica-
tion is given and control is surrendered to IVY, which selects
the card reader or input tape in an attempt to find the next
job.

2. Programming errors include such things as attempting to space
the tape too far forwards or backwards, asking to read a re-
cord which is not in the current file, incorrect calling se-
quence words, etc. In general, spacing errors will cause an
error indication, but “@TP” wi~ proceed to the next calling
sequence word. Errors affecting actual reading and writing
operations will cause error indication, and “j!TP”will surren-
der control to IVYj since it is assumed that the tape input or
output operation is vital to the code, and that the code can-
not run without it. Some errors, e.g., end-of-tape detection,
cause a halt; when the condition has been corrected, pressing
“start” or “console signal” will cause “#TP” to proceed. “@TP”
indications are included in the list of IVY error indications.

Some examples of “@TP” calling sequences: Included also
is the action “@TP” takes under various conditions.

EXAMPIE N(YSE

(7P, @p: @@),.o. 1

(@P,#TP: @ID3: @R3, GE(@W#)+l: FXNTZ($WP): 2
@B2,3: @D2, TH(#WA)+2)

&(#P, P: #P6: @w5: @R5,FN(@A)+l: AD(m): 3
5, FN(@A)+2: AE(j!fwl?): jmR5,FN(@WA)+3:

AF(@wP):@F5)

(#P,&~%,3: j4?BB,2:@DB, RSN(@A)+2: 4

-12?j-

NOTES:

1.

2.

3.

4.

D.

This calling sequence entry simply causes the machine to wait
until all input-output channels containing tape units have
completed their current operation. An entry of this type can
be used before operations affecting a block being read or writ-
ten in the parallel mode are performed, so that a block still
engaged in input-output transmission will not be altered be-
fore the transmission is completed.

In this entry, block “FXNTZ” is written in high density on
tape 3, after which tape 2 is backspaced two records and the
ID of the new record is checked. It is assumed that the den-
sity of tape 2 has already been set. Note that the density
of a tape unit can be set internally using calling sequence
words, or externally by pressing a button on the tape unit.
In any event, once a tape is set to a certain density, this
setting should not be changed. A given tape unit should always
be read, written, backspaced, etc., in the same density.

The blocks “AD,” “AE,” and “AF” are written on tape 5, then an
end-of-file is written. This is all done in the parallel mode,
so that the operations may not be complete when l’#TP”returns
control. An entry of the type discussed in note 1 should be
used before any attempt is made to alter the blocks “AD,” “AE,”
and “AI?”.

Tape “B” is spaced forwards 3 files plus 2 records, and block
“AXX” is then read. It is always a time-saving procedure to
position a tape properly before a record is read.

The switch test program. “f(sW,”has no calling sequence and

is entered by a simple pathfinder branch

(@P,@W),

The purpose of “#SW” is to test the six sense switches and read the keys

on the 7090 console, and to read the settings of the various buttons>

keys, and switches on the 7030 console. The infoxznationgleaned from

the reading of these console devices is set up in the’’’@CS”block in

-I26-

a format wnicn can be easily tested internally. The first six binary

switches on the 7030 console are treated the ssme as the sense switches

on the 7090 console to provide analogous input. “@CS” is set up as

follows on the two machines:

TABLE VI

“#CS” BL(X2KSETTINGS BY “#SW”

“SCS” WORD

@csl

@cs2

#cs3

@cs4

$CS5

$CS6

ffcs7

@cs8

$CS9

$Cslo

@csl1

@csl2

CONTENTS,7090

sense switch 1: 0 if
off, 1 if on

sense switch 2

sense switch 3

sense switch 4

sense switch 5

sense switch 6

switches 1-3 in
binary

switches 4-6 in
binary

switches 1-6 in
binary

console keys S,1-35

zero

zero

CONTENTS, 7030

binary switch O

binary switch 1

binary switch 2

binary switch 3

binary switch 4

binary switch 5

switches O-2

switches 3-5

switches O-5

binary keys,O-63

numerical switches

first half word:
binary switches.

second half word:
digital potentio-
meters.

-127-

TYPE OF WORD

fixed

fixed

fixed

fixed

fixed

fixed

fixed

fixed

fixed

Boolean

Boolean

Boolean

Thus we note that $CS1-#CS9 are analogous on both machines if we inter-

pret the first six binary switches on the 7030 as equivalent to the

7090 switches. Similarly, the last 36 binary keys on the 7030 are equi-

valent to the ~ console keys on the 7090. The same sequence of instruc-

tions can be used on either machine to handle these ~ settings. If the

other settings on the 7030 are used, one can retain compatibility by cod-

ing an alternative routine under the control of “@L5,” the machine num-

ber indicator. Or a program can be coded to test the 7030 settings with-

out worrying about incompatibilitywith the 7090, if desired. Such a

code, of course, will not function properly on the 7090 if compatibility

is required.

E. The test trigger routine, “@?T,” is used to test the status of

various internal machine indicators (ac overflow, divide check, etc.,

on the 7090, and various xnaskableindicators on the 7030). After the

test all,indicators are turned off. Certain words of “@CS” are set ac-

cording to the status of the indicators, and if desired, a diagnostic

comment is printed on-line. Also, optionally, the programmer can cause

''#~''togiveup control to~ifany of theindicators are on. IVY

contains various internal programs to handle cases of floating point

overflow or underflow, so in general the trigger settings will reflect

only the results of fixed point operations. The trigger settings, and

the resulting settings of ‘t#CS,”are as follows:

-I28-

“#es”
WORD 7090 TRIGGER

@CSl AC overflow:
O if off

@CS2 MQ overflow:
o if off

TABLE VII

“@S” SEI!TINGSBY “$l?T”

#CS3 Divide check: 1
0 if off

#CSk Negative square
1 if negative,
O if not

if on,

if on,

j!fCS~Zero always

if on,

root:

7030 TRIGGER
TYPE OF
WORD

LC,PF,L9S:1 if any fixed
is on

PSH: 1 if on, O fixed
if off

ZD: 1 if on, O fixed
if off

IR: 1 if on, O fixed
if off

indicator word: Boolean
contents on entry
to “jkrc”

Note that on the 7030 the contents of the entire

placed in $CS5 so that individual indicator bits

indicator word

may be tested.

dicator register is always set to zero on exit from “$IT’.”

The calling sequence to “#’I’T”is as follows:

where “#N” means “no

headed by the symbol

were on”; “#R” mesas

are

The in-

print,” “4P” means “print a diagnostic comment

IATIIand containing a list of the indicators which

“return

means “return control to IVY

Note that “@TT” always has a

control to the problem program,” and “II”

if any of the tested triggers were on.”

fixed-length calling sequence two words long.

Only the format of these calling seqyence words is variable. This calling

sequence, being fixed length, cannot appear on a “K” card.

F. The octal dump program.’’j@D”is used to obtain a dump in octal

of any or all of the data blocks or longhand formula sets used in a pro-

gram. A decimal dump of data, of course, canbe obtained using the print

program “@R” described in the next section. The octal dm appears off-

line on tape 9 unless console key 35 (7090) or binay key 63 (7030)is

down, in which case the dump will be printed on-line. The calling se-

quence to “@@D” may consist of one word (if a dump of ~ data regions

and longhand formula sets is desired) or of any number of words if a

dump of only certain blocks is desired. The one-word entry for dumping

all blocks is:

(@P,$#D:@DA)j.oo

where “@DA” is mnemonic for “dump all.” If only certain blocks are to

be dumped, the format of each calJing sequence word is

....SYMB#L(@P)....

where “SYMB#L” is the name of any data block or longhand formula set.

The dump consists of the following information:

1. The symbol for the block whose dump appears below;

2. A nwnber of lines consisting of the contents of the block,
in octal, each line being constructed as follows:

a. A five-digit octal number giving the location of
the first word on the line on the 7090, a six-
di.gitnumber on the 7030;

b. A string of octal numbers:

-130-

(1) eight numbers of twelve digits each are printed on
the 7090;

(2) eight numbers each consisting of eight octal digits
plus two hexadecimal digits in the standard format
(i.e., four full words) are printed on the 703).

G. The print program. “@R” is used to print numbers in decimal

in a wide variety of formats. This printing can be done, in a limited

amount, on-line; or off-line on tape 9 for later printing on a peripheral

device; or off-line on tape C for producing a listing on microfilm via

the SC-4020 microfilm device. The format statement controls not only

the format of individual numbers within each block printed, but also the

arrangement of vectors and blocks on a page, the printing of column and

row headings, remarks, etc. The “$?R” calling sequence has a large num-

ber of calling sequence words which will be explained in turn.

10 E2@2E” The simplest calling sequence word entries control

the spacing of the page. Normally single spacing takes place between

lines and double spacing between blocks. If other spacing is desired be-

tween blocks,one or more of the following calling sequence word entries

are used:

Csw

$!IP

$2P

#DP

@T

$%T

pm

@M

-131-

OPERATION

Restore page (on-line)

Half-page skip (on-line)

Double-space printer (on-line)

Restore page (tape 9)

Half-page skip (tape 9)

Double-space page (tape 9)

“Restore page” (advance film -
tape C)

I

Csw OPERATION

@M “Half-page skip” (microfilm - tape C)

@M “Double space” (microfilm — tape C)

2. l?rintin~of remarks. Remarks may be

benefit of’a format statement, by use of one of

sequence word entries:

printed, without the

the following calling

@P,R.EM(#wP) print remark on-line;

~T,RFM(@WP) write remark on tape 9;

@M,REM(@WP) write remark on tape C for microfilm;

where “REM” represents a symbol for any remark. Remarks can also be

printed, if desired, under the control of a format statement as de-

scribed below.

3. Format statements. Format statements are remarks constructed

in a particular manner to control the printing of arrays of numbers and

“comment” remarks, as well.as giving various other information about

the format of the printout. The calling sequence entry for a fo~t

statement is as follows:

@F,F@MAT(~Wp)

where “F@MAT” is the name of the desired “format” remark statement.

The format named then holds for all the following information until it

is exhausted, a term which will be explained below.

The first field, and only the first field, of a remark state-

ment must contain one or more control characters followed by a comma;

-lp-

the general appearance of this part of a format statement is as follows:

RIF@MAT =C C C, ~ ~...cNo.o.

where “F@RMAT” is the name of the

characters. Each “C.” may be any

statement and the “Ci” are control

one of the following:

P

T

M

c

R

L

F

fl

o
or blank

J.

print

print

print

print

print

print

print

on-line.

off-line (tape 9).

on microfilm (tape C).

column indices on vectors or arrays.

row indices on vectors or arrays.

vectors and arrays in line format.

fixed point numbers as integers re-
gardless of format statement.

print fixed point tags of
numbers in octal.

ignored.

double-stored

The functions of the chs,racters’’C,”“R,” “L,” “F,” and “$”

will be discussed somewhat later in this section. Of the characters

1111“P, T,” and “M,” only one may occur to specify the mode of printing

desired. If more than one occurs, the last one in sequence will take

precedence. At least one of these characters must occur; if none

occurs, “T” will be assumed. The characters “T” and “M” can be cver-

ruled temporarily by console key 35 (7090) or binary key 63 (7030).

If this is down,the next block encountered will be printed on-line re-

gardless of the format statement. If key 35 is up, “T” or “M” will

again take control. We thus note that this particular key is always

-133-

reserved to specify on-line printing; in general its use should be re-

stricted to emergencies to save machine time.

To print a remark under control of a format statement, the fol-

lowing two calling sequence words must

#F,F@RMAT(@P):

be used:

REMARK(@WP)

The remark will be printed on-line, off-line, or on the microfilm tape

according to the setting of the print key and to which of the characters

11If“P, T,” or “M” occurs in the format statement. For example, if “F@RMAT”

and “REMARK” are defined as follows:

R IWRMAT= PJWF
R llWARK = THIS IS A#@I@ LINE lWARK.@#~

the above two calling sequence word entries will cause

THIS IS A

Tw@ LINE REMARK.

to be printed on-line. (“@R” automatically detects the “$#’tand causes

the printer to space at that point).

4. Printing numbers and arrays of numbers.

a. The “C,” “R,” amd “L” controls. As remarked above,

“C” and “R” occurring among the control characters of a format statement

cause column and row indices, respectively, to be printed with arrays of

numbers. The first column index, if any, will always be replaced by the

name of the

indices and

as follows:

block which is about to be printed; the rest of the column

the row indices ascend in sequence. These indices appear

row
J

column + NAME 2 3 4 ... N

1

2

3

●

.

.

M

The column indices are always properly centered over the appropriate

column.

If “L” is not given, the so-called normal

occurs: namely, one-dimensional arrays or vectors

form of printing

are printed in columns,

and multi-dimensional arrays are printed in matrices such that the first

index varies along columns. The following diagram illustrates the nor-

mal form of a vector and a two-dimensional array:

VECTOR

‘1

‘2

‘3
●

●

A:

B
1,1

B
2,1

B3,1
.
●9

‘J,l

‘IWO-DIMENSIONALARRAY

‘1,2

‘2,2

‘3,2

‘j,2

‘1,3 ““0 ‘h
k

‘2,3 “*” ‘2’k

‘3,3
... B3,k

●

●

●

B.
J,3 ● “” ‘j,k

-135-

N-dimensional arrays (where N ~ 3) are printed as two-dimensional

matrices. In each matrix the last N-2 dimensions are constant, and the

first index varies along columns as above. The matrices are printed in

such an order that the Yirst

pidly from matrix to matrix,

Nt& dimension least rapidly.

matrices of an array. Thus,

(I, J, K, Lj...,p) and~, ~,

of the last N-2 dimensions varies most ra-

the second dimension less rapidly, the

Double spacing always occurs between the

for example, if array “C” has dimensions

represents one of its two-dimensional
●☛☛✌❐

matrices, these matrices are printed in the following order:

M
1,1,...,1

double space

M
2,1’”””’1

double space
.
.
●

%,1,...,1

double space

‘1,2,***,1

double space

‘2,2...,1

double space
●

●

●

%,l,. O.,P

double space

%+1,1,...,p

double space

●

~-l, L~...,P

double space

%, L,...,P

If the rows of any two-dimensional mtrix are so long as to exceed the

size of the page (119 columns), the matrix wilILthen be printed as fol-

lows:

‘1,1 ‘1,2 ‘1,3 ““” ‘I,i

‘2,1 ‘2,2 ‘2,3 ““” ‘2,i

‘J,l ‘j,2 B.
J,3 ““” ‘j,i

double space

‘I,i+l ““” ‘1 ,k

B
2,i+l ““” ‘2,k

9

●

●

‘J,i+l ““e ‘j,k

-137-

Since the overflowing portion of the matrix is printed separately, it

can be read easily as an extension of the first portion. Its row in-

dices (if any) are reset to start at 1 and its column indices (if any)

continue from the highest previous value. Thus, if desired, the later

portion of the listfng canbe cut out and attached to the right of the

earlier portion to give a complete picture of the array.

If an “L” is given in the format statement, the so-called line

form of printing occurs; that is, vectors are pfinted_ the ~ne?

and multi-dimensional arrays are printed so that the first index varies

in rows, as follows:

VECTORS

ARRAYS

Al ‘2

‘1,1 ‘2,1

‘1,2 ‘2,2

‘h3 ‘2,3

●

●

●

‘M ‘2,j

‘3 ““”

‘3,1 “*”

‘3,2 ““”

B,3,3 ““”

BS,j ● **

‘k,2

‘k,3

‘k,j

The comments given above about the order of printing of the matrices of

an N-dimensional array and the convention in case the rows of a matrix

overflow the page also apply here.

b. Format control of numbers. The control characters mentioned

above govern only the outward appearance of a listing: the spacing

-13&

between blocks, the appearance of row and column indices, and the order

in which the elements of a vector or array appear across the page. The

remainder of the format statement specifies the exact appearance of each

individual nmber in the listing. After the control characters have

appeared, any number of fields consisting of five decimal numbers sepa-

rated by periods may occur, each specifying the format for one or more

blocks of data. This appears as follows:

RIF@MAT = C1C2...CN, N.S.I.F.E., etc.

t? 1!
“N, S,” “I,” “F,” and “E” are decimal numbers having the following

meanings:

N: The number of blocks of data for which this portion of format
is to be used.

s: The number of blank spaces which precede each number printed
under control of this format statement.

I: The number of integer digits (to the left of the decimal
point) to be printed in the numbers under control of this
portion of the format.

F: The number of fractional digits (to the right of the deci-
mal point) to be printed.

E: The number of exponent digits to be printed.

For example, if “F1” is a format as follows:

RIF1 = P, lsl.l.7.2, j$@

and if “B” is a vector of data, the two calling sequence words

$F, F1($WP): B(#WP)

-1>-

will cause the elements of the vector “B” to be printed on-line in a

column as follows:

-X.~+-~

where “x” represents a decimal digit, “ “ represents a blank space, “-”

represents a minus if the sign is negative or blank if positive.

A right-to-left dropout feature operates in the “N.S.I.F.E.”

fields. That is, if “.E” is omitted, the number willbe properly ad-

justed and printed without an exponent; if “.F.E” is omitted, the num-

ber wild.be printed as an integer; and if “.I.F.E’*is omitted, “S”

spaces will be inserted in the listing “N” times- Any combination of

the numbers It!1“S, I,” “F,” or “E” may be zero to work up variations on

this theme.

In general, the “N.S.I.F.E” field holds for all numbers in the

block printed under its control regardless of whether they are fixed or

floating point. However, if “F” appears among the control characters

discussed in the previous section, all fixed point numbers in the block

will be printed as integers, regardless of whether “.F” and “.E’;are

zero or not. The number of digits printed wild equal I+F+E+2, subject

to zero print control (i.e., lead zeroes are suppressed).

The general calling sequence entry then for printing M vectors

under the control of a single format statement is:

@F,F@W(@WP): VECT$R1(@P): VECT@R2(@p) :...:VECT@~($WP)

The format statement must be sufficient to print all M vectors; i.e.,

-140-

the sum of the N/s in all the “N.S.I.F.E” fields in which at least one of

I, F, and E is non-zero must be at least M. For example, the following

format will serve to print 7 vectors (or less):

RIF2=132R, 30107.7.2, 3.2, 2.1.1.5, 2.2.2.6.1, j$$if

To print a string of parameters starting with a given parameter

under control of some format statement, the following calling sequence

entry is used:

@F, F@MAT(@P): @N, PARAM(@WA)+P

where N < 99 is the number of parameters desired and.“P” represents

parameter algebra the result of which must be at least 1. Then the N

consecutive parameters starting with the one in location PARAM(@WA)+P

are printed in the same manner as a vector.

If the programmer wishes to print the parameters in several

blocks using this single entry, the name “PARAM” must specify the last

of these blocks loaded on “D” cards. The paraeter blocks are then

printed in reverse order of their loading, from last to first; the num-

bers in each block, however, are printed in sequence from first to last.

For example, consider the following format statements and

calling sequence to “#pR”:

RIFI = CRT, 3.2.1.5.2, 2.0.3.2, @##

RIF2 = CRPL, 1.1.2.3.1,f$i~

and

-141-

Il(~p, j@R:$F,Fl(@P):MxT(j@):Ap x(@WP):F~Z(@P):

lTNpRL(@P):vHN($tP):#F,F2(@P): @P5,P@@WA) +1),...

The vectors “MXT,“ “APX,” and “FNTZ” will be printed in parallel columns

in the format

+Xx,-x.xxxxx-—

the two vectors “TNPRL” and “V13N” will be printed in columns parallel

to these in the format

-xxx.Xxj

and five parameters starting with “PC” will

quent line in the format

ficult

to the

-Xx.)mdx.

be printed across a subse-

printing multi-dimensional arrays presents a somewhat more itLf-

problem since the first one or two dimensions must be made known

print progrsm in order to break the block up into its correct two-

dimensional sub-matrices.

assuming a previous format

where “MATRIX”

bra expression

is the symbol

for the first

To print a two-dimensional array, or matrix,

statement, the following is necessary:

more dimensions, the

where “ARRAY” is the

@2, MATRIX(@lP):P

for the block and “P” is a parameter alge-

dimension. To print an array of three or

fo~owing entry is used:

#A, ARRAY($WP): P1:P2

symbol for the block and “Pl” and “P “ are
2

-142-

parameter algebra expressions for the first two dimensions. If these

entires are not used for multi-dimensionalblocks, the blocks wilJ be

printed as vectors.

Arrays or vectors (but not parameter blocks) may have been de-

fined as double-stored numbers. If this is so, and one wishes to print

both the “Q” and “T” portion of these numbers, an extra calling sequence

word giving the tag length must be placed immediately after the one nam-

ing the block, as follows:

vector: VECT~R(#WP):$D,P

matrix: @2,MATRIX(~WP):#D,P1:P2

multi-dimensional
array: ~A,ARRAY(@WP):@D,P1:P2:P3

where “@D” is mnemonic for “double-store,”and the parameter algebra

following it is the tag length in bits. The other parameter algebra

expressions are for the dimensions as described above. When double-

stored numbers are printed in this fashion, the tag, in decimal (or

octal if “@” was one of the control characters in the format statement

described on page 133), preceded by the letter “T,” occupies the low order

digits of the fraction. Thus, for example, if a double-stored block

contains a five-bit tag and is printed according to the format

“N.lO1.7.2,” each number of the block will appear as follows:

_ ‘X.~D&XX

where “D” represents an octal or decimal tag digit. The coder should

bear this in mind and adjust the size of “.F” accordingly.

-143-

Under control of one of two other calling sequence words, one can

print only the “Q” or only the “T” portion of a double-stored number, if

desired. The calling sequence entries to do this are:

print “T” only:

vector: VECT#R(@P):@,P

matrix @2,MATRH(#w) :@T,P1:P2

multi-dimensional
array: #A,ARRAY(#WP):@,P1 :P2:P3

(Regardless of the format statement, the tag is always printed as a deci-

mal cm octal integer preceded by the letter “T.”)

print “Q” only:

vector: VECT$R(@WP):$Q,P

matrix j!$2,MATRIX(@P):$Q,pl:p2

multi-dimensional
array: $A,MATRIX(#WP):#Q,P1:P2:P5

5. Printing immediate remarks. We have already discussed how to

print ordinary remarks. Lnmediate remarks, however, differ from ordinary

remarks in that they occur in the format statement itself, and may pre-

cede any “N.S.I.F.E” field enclosed in parentheses, thus:

,(REMARK)N.S.I.F.E,

The characters in an immediate remark may be any legal hollerith charac-

ters, except that parentheses occurring in the immediate remark must be

-14/t-

closed, i.e., must occur in the order

(...)*

Immetiate remarks should be reasombly brief (in no case, over 119 charac-

ters long) and are used usually for short headings, etc., and permit a

considerable sophisticationin the printout. A pair of examples will

serve to illustrate

and

possible uses:

RIF1=P,(PARAM.=) 1.0.1.7.2, ###

Il(@P,@@F,Fl(@WP):#Pl,AD(@WA)+l),...

will cause parameter “AM” to be printed as follows:

PARAM•.-x*~&x

The folJ_owingformat:

RIFF=CRT,l.54, (~) 1.54,1.1.1.5.2, $$$

and the calling sequence

Il(#P,@:#F,FF(#WP):#2,AA(@WP) :GE+3),...

will.cause the heading

TEMPERATURE

to appear centered in the page above the printout of matrix “AA.”

*6. Error detection. “j%” detects a variety of errors and
prints out a nmber of diagnostics on-line. Control is always re-
turned to the problem program, however, since the validity of the output
print has no effect on the workings of the program. Some of the more
serious errors are:

a. Attempting to print blocks of numbers with no format
statement;

-145-

b. Attempting to print blocks with an inadequate format

statement, i.e., one which does not have enough non-
zero “.I.F.E” fields to cover every block specified;

c. Attempting to print an undefined block, i.e., one for
which the symbol is not in the symbol table, or which
has no address defined;

d. Attempting to print a block of code.

Other less serious errors, for which no indication is given, are:

a. Attempting to print both the “Q” and “T” portions of
a double-stored number, when “.F” is not large enough to
include the entire tag and the letter “T.” In this case,
printing of the tag is suppressed.

b. Iost significance, e.g., in a case where “.E” is zero or
missing, an integer part is too large for the “.1” spe-
cified. In this case the integer is printed modulo 101.
Or specifying too few digits for the e orient,in which

3case the exponent is printed modulo 1 .

H. The Punch Progrsm, ~PH, is quite similar in usage and con-

ventions to the print program. The calling sequence and format state-

ments are simply a subset of those for the print program. “@H” pro-

duces “R” cards and “E” cards which may be used as input to a future

IVY program. The following differences exist between “@PH” and “#pR”:

10 No microfilm option is allowed in “~PH.” If the “M” con-
trol character appears in the calling sequence or in a
format statement, it is replaced with “T.” (Note that
cards written off-line for later punching are also placed
on tape 9 with a distinguishing character detected by the
IBM 1401 in the output process.)

2. If any of the spacing options (e.g.,’’#~P,”“@2P,’’etc.)
occur in the calling sequence, a blank card is produced.
Blank cards are ignored by “j#LD.”

3. The control characters “C,” “R” and “L” of the format
statement are inoperative. Numbers of a block are simply
punched in sequence on “E” cards separated by commas
after the symbol for the block and an equal sign.

-146-

4.

5.

6.

79

8.

Whether or not the “F’’controlcharacter is present in a
format statement, fixed point numbers are punched as in-
tegers so that the “E” cards are punched properly for
input usage.

Remarks are punched on “R” cards (and continuation cards,
if necessary) complete with name, equal sign, and all
necessary “##” and “#$#” characters.

Parameters are not punched using the “@PN” convention,
but must be punched as vectors.

“@H” ignores immediate remarks in its controlling format
statements.

Double stored nunbers are punched in the proper input for-
mat, i.e.,

AD(Q.P) = N1,N2,0*0,AD(T.P) =M1,M2,...

and so on. The “@” flag of the format statement is still
operative and will cause the tags to be punched in octal,
prefixed of course by the “(B)” entry described in
Chapter 3.

Bearing these differences in mind, the programmer can easily punch

data and remarks using essentially the same techniques used for printing.

In fact, the same format statements can be used for both punching and

printing without error indication from “#PH.”

I. The microfilm plot program. “#Ml?”is used to produce output

on tape C which, when used as input to the SC-4O2O peripheral microfilm

device, will cause graphs to be produced on microfilm. We have already

seen, in the section describing “#P’R,”how ordinary output listings can

be produced by this device. Plotting is a somewhat more complicated

business; it is not, however, the purpose of this writeup to describe

the characteristics of the 4020 in detail. Instead, the curious reader

-147.

is invited to read either the 4020 manual itself or any of a variety of

writeups on the 4020 which are available.

“@@” permits a wide variety of operations: advance film, select

grid, label grid, write a label horizontally or vertically, plot points

with an option of comecting points with a vector, and generate an arbi-

trary set of axes. This is all done under control of various calling se-

quence words as described below.

1. To advance film, the following calling sequence word must
be used:

$AFN,P

where “N” is either O or 1: 0 if no hard copy is desired,
1 if hard copy is desired. This calling sequence word
causes the microfilm to be advanced one frame; if N = 1,
a series of vertical lines are drawn signifying that hard
copy is desired; the film is then advanced “P” more frames
where “P” is a parameter algebra expression. For example,
the entry

$AFO

will simply cause the film to be advanced one frame. The
film must be advanced whenever a graph is complete.

2. The calling sequence words specifying a “select grid” cause
a grid of lines to be drawn horizontally and vertically
for the graph coming up. The normal film frame has 1023
plotting positions in each direction, and the grid is drawn
in the upper right corner of the frame, 900X900, to allow
room at the left and below for labeling. A number of
types of grids are available under calling sequence con-
trol. The following three calling sequence words are used
to select a grid:

f%G: PI:P2

where “Pl” and “P
$
“ are parameter algebra expressions the

value of which sp cify the horizontal option and vertical
option respectively, as follows:

-148-

3.

VALUE OF PI

5
6

i’
9
10
11
12
13
14
15
16

1
2

5
10
15
20
25
50
1
2

5
6

GRID OFTION

interval (border only)
intervals (linear)
intervals (linear)
intervals (linear)
intervals (linear)
intervals (linear)
intervals (linear)
intervals (linear)
intervals (linear)
intervals (linear)
cycle logarithmic
cycle logarithmic
cycle logarithmic
cycle logarithmic
cycle logarithmic
cycle logarithmic

For example, the callLng sequence

j%G:4:2

words

will cause the following grid to be drawn:

1
1
I
I
I
I
I
I
1
I EEY
!
L ‘k’-------___--

BORDER (900X900)

FILMFRAME(I023XI023)

Any combination of options maybe used, e.g., six cycle
logarithmic (PI = 16) versus 50 linear intervals (P2= 10),
etc. On logarithmic grids the main division lines are drawn
heavier for easy readability.

Any grid produced by the preceding option canbe kbeledby
using the “label grid” command immediately foXLowin~ the’’select
grid” command. Two calling sequence words are necessary, as
follows:

$LG:XYBDS(j#WA)+P

-149-

‘4.

where XXBDS($WA)+P contains the minimum X coordinate, the
next location contains the maximum X coordinate, and the
next two locations contain, respectively, the minimum and
maximum Y coordinates. The kbel.ing of a logarithmic
scale follows the usual conventions with a “+” mark placed
at each point labeled. Linear labeling consists of “+”
marks placed along the left and lower border at points de-
fined by the option and a 3 digit signed integer at each
“+” mark with a 2 digit signed power of 10 added at the
origin. For example, if we wish to label the grid of the
previous section, and ~in = 3.15621-02, wax = 5.1231,

‘rein= 0} ‘mu = 3, then the grid as labeled wo~d look
as follows:

Because of space limitations, the linear grid of ~ intervals
is labeled only at 25 points.

The fourth option allows the writing of remarks either hori-
zontally or vertically to describe the graph and the infor-
mation
quence

contained in it. The format of ~he-three calling se-
words necessary to do this is as follows:

@RN, I@@P): R(&lA)+P1: C(#WA)+P2

where N = O means “write horizontally,” 1 means “write verti-
cally;” “REM” is the symbol for the remark to be written; and
the next two quantities addressed are floating point numbers
specifying the row and column at which printing is to begin.
A film frame is considered to be divided into 64 rows and
128 columns; however, both R and C maybe multiples of 1/4 to

-150-

allow mre exact positioning, superscripts, or subscripts.
When writing vertically, the first character is positioned
at row R and column C and succeeding characters are each
spaced down one row. No more characters will be printed
after row 64 is reached. When writing horizontally, the
first character is positioned as before and succeeding
characters are each spaced one column to the right. After
column 128 is reached, the next character (if any) will be
PO itioned one row down and at column 1. Note that the
d ph area defined previously is above row 57 and to the
right of column 15.

5. To plot a series of points on a grid, the following five
calling sequence words are necessary:

#mN,M:@@P):Yc(#wP):xY BDs($wA)+p:TFMP($wP)

where N = O means “do not connect successive points with
a line,” N = 1 means ‘~mect successive points;” “XC”
is the block containing the ordinates (or the logarithms
of the ordinates, if a log grid is used); “YC” is the
block containing the abscissas (or the logarithms of the
abscissas, if a log grid is used); the four words start-
ing at the address “XYBDS($WA)+P”contain the minimum and
maximum ordinate, and the minimum and maximum abscissas,
in that order; and “TEMP!’is a block the same length as
“XC” and “YC” which “j$MP”can use the temporary storage.
“M” is the decimal equivalent of the character to be
plotted which can be determined from the following table:

TABLE VIII

DECIMAL EQUIVALENTS OF PL(YTTINGCHARACTERS

DEC.

o
1

2

?
6
6
7

CHAR.

;
B
c
D
E
F
G

DEC.

16
17
18
19
20
21
22
23

CHAR. DEC.—— CHAR ●

T
v
v
w
x

DEC.

g
50

;:
53
54
55

-151-

TABLE VIII (Continued)

DEC.

8
9
10

11

12
13
14
15

CHAR.

H
I
K

DEC. CHAR.

24 Q
25 R
26 .

28
29 *
30 Y
31 *

d

DEC.

40

?2

43

:;
46
47

CHAR.

Y
z
o

>

(
J
z
c1

DEC.

56
57
x

59

:
62
63

If one desires to superimpose two characters, this can be done
by setting M = 64 x (Ist char.) + (2nd char.). The points are
plotted with the character or characters specified, and succes-
sive points are connected by a vector, if desired. The maximum
vector length allowed is 1/16 of the size of the film frame.

6. To generate a pair of axes througha given point, the following
three calling sequence words are used:

$GA, XYBDS(@A)+P: x21H@(@wA)+P:yZE@(@A)+p

where “XYBDS” is as described above, and “XZJZR@”and “YZER#”
represent, respectively, the ordinhte and abscissa of the point
through which axes are to be drawn. The axes cover the 9~x900
grid area only. As with “~~, “ “@MP” detects certain errors,
none of which are serious enough to cause it to return control
to IVY, and prints appropriate diagnostic comments. Remedial
action taken in the event of some errors is described in the
table of error numbers. Some information on “@P” diagnostics
is included in Chapter 7} page 159.

J. The disk program. “#DK” is used to write blocks of data on the

disk unit of the 7030, and on the disk units of 7090 machines which have

-152-

them attached, and to read them back as needed. Although some 7090!s do

not possess a disk unit, “#DK” is nevertheless a valid subroutine on all

7090’s, using a tape to simulate the disk. Up to 32 blocks of data,

remarks, code, or calling sequences may be written on the disk.

10 To write a block on the disk, the following two calling sequence
words are used:

@N, D(@A)+P: DATA(@WP)

where “N” (only on 7090’s not having a disk unit) specifies
the tape unit being used to simulate the disk. Only one
tape unit may be used - i.e., “N” must always be the same
number in a given program. On the 7030, and on 7090~s hav-
ing a disk, “N” is ignored. “ID(SWA)+P” addresses an “ID”
word in the same manner as in the “@’I’P”calling sequence.
This “ID” is entered into a 32-word table and is as-
signed an arc number on the disk (on some 7090’s, a record
number on the tape specified). The block “DATA” is then
written in this arc (or record). If 32 blocks have
already been written, an error indication is given unless
the “ID” specified is the same as one of the previous twenty.

2. To read a block from the disk, one enters

@DN,ID($wA)+p: DJYCA(@P)

The “ID” is sought in the table mentioned above, and its loca-
tion on the disk (or tape) discovered, and the record is read
into the block specified by “DATA.” If the “ID” cannot be
found in the table, “@DK” gives an error indication and con-
trol returns to IVY. (The absence of the “ID” from the table
indicates that a record with this “ID” was never written.)

K. The instructions to operator routine. “$@P” functions similarly

to the “~” card in that it prints a remark on-line, sounds a gong if pos-

sible, and halts or waits until the “start” (7090) or “console signal”

(7030) is pressed, signifying that the instructions have been carried out.

The callhg sequence to “#@P” is as follows:

-133-

(~P,$l#P:REMARK(#WP)),...

where “REMARK” is the name of the remark to be printed as a comment to

the operator.

L. The character manipulation program. “~CM” is used to change

remarks or format statements or to construct new ones under programmer

control. “@CM” may not be used to alter calling sequences on “K” cards

(see Chapter 8, pages 182-184). A number of calling sequence words cause

the various necessary functions to be carried out.

1. To set an entire block to contain the same character, e.g.,
blank, zero, etc., the following calling sequence word
is used:

@IN, REMARK(@)

where “N” is the two-digit decimal equivalent of the char-
acter desired (see Table VIII), and “REMARK” is the block
to be set.

2. To move from one to fifteen characters from one remark block
to another, the following five words are used:

@N:AD(~WA)+P1 :REMl(#WP):AE(j#WA)+P2:REM2(#WP)

where “N” is a hexadecimal digit, 1 < N < F, specifying
the number of characters to be moved; lo~ation “AD(#WA)-t-P1”
contains a fixed point number specifying the character
number in remark block %EMl” where the “N” characters to
be moved begin; and “AE(~WA)+P “ contains a fixed point num-
ber specifying the character n~mber in remark block “REM2”
where the “N” characters moved will begin.

3. To compare from one to fifteen characters in one remark
block to the same number of characters in another remark
block, the following five words are necessary:

j3CN:AD(@A)+P1:REMl($wP):AE(SWA)+P2:RF@ $WP)

where again 1 < N < F specifies the number of characters
to be compared; “J@SWA)+P “ contains a fixed point num-
ber specifying where the “*” characters to be compared
begin in “REMI;” and “AE(SWP)+~2” contains a fixed point
number specifying where the “N characters in “REM2” be-
gin. The specified “N” characters in “REMI” are com-
pared to the “N” characters in “REM2;” if equal, “jl!csl“
is set to 1; if not equal, “#CSl“ is set to zero. To
clarify the usage of “#CM,” a number of examples are in-
cluded below.

EXAMPLES:

1. To alter a format statement:

the illustration below, then the calling

the “P” to a “T” and the “7” to a

ing it to print numbers with less

Ill

Ill

“3” in

If “RI”

sequence

and “F1” are as shown in

illustrated will change

the format statement, thus alter-

significant digits off-line:

R FI =CRP, I.I.I.7.2, .S$$

R RI=T3P7SSS 11111

I PARI=3, PAR2=3, PAR3=2,PAR4=II, 11111
[$P, $CM: $Ml: PAR($WA)+I :RI($WP): PAR($WA)+2:

1111 FI(SWP): SMI:PAR(SWA)+3: RI(SWP): PAR(SWA)+4: 11111
FI($WP)),...

2. Defining a block and setting it to blanks: If remark block

“R2” is defined as shown below, space is allotted for it but is not

cleared in any way. To ensure that the block contains only legal charac-

ters in this case, all blanks), tinefollowing is used:

1111 [1111

R R2(759)=SS$

1111 .. 11111
I (SP,SCM:SSOO, R2($WP)),...

1111 11111

-155-

3* Determination of a character’s position in a table. In the

following example, we wish to see whether a character of “REMARK” lies in

“TABLE”(i.e., whether it is alphanumeric) and if so, its position, so

that we can determine whether x not it is alphabetic:

1111

Ili

R TABLE=O123456789ABCDEFGHIJKLMNQ)PQRSTUVWXY*$$$
. 11111

I X1(1,36), PARI=XI,

(SP, $CM:$Cl: pAR(SWA)+i: TABLE($WP):N($WA)+ I: 1111
REMARK($WP)),(LI) $CS1-l=O, (Xl),...(not mtabla).

4
. . . , LI, (L2)XI-IO=GZ,... (numeric) 1111

I 1. L2(al~habdic) P

The calling sequence is entered once for each value of Xl, from I to 36.

Each time PA.R1,the character position in “TABIE,” is set to the value of

xl. It is assumed that NI contains the character position in “REMARK.”

If at some given exit, “#CSl” contains 1, the character is indeed in

“TABLE,” and the contents of Xl are tested to see

is numeric (Xl ~ 10) or alphabetic (Xl > 10). If

pleted without j?!C!Slbeing set to 1, the character

hence not alphanumeric.

whether the character

the index loop is com-

is not in “TABLE” and

M“ WE?.%?!” In this chapter we have dealt with the calling se-
quences to all internal IVY subroutines which are available to the pro-
grmer. With these subroutines one can do a wide variety of input-output
operations, indicator and switch testing, and internal manipulation. Our
study of the IVY “#’’symbolsis now complete. In Chapter 9 one can find a
table of all the IVY “#” symbols (page 1~7), as well as quick reference
tables for calling sequences to the various subroutines described in this
chapter (pages 197-202).

CHAFTER 7

IVY ERROR INDICA!J!IONS

Each time any of the routines in IVY detects an error, an error

diagnostic is printed. Each routine prints particular information, de-

scribed below; all these printouts have in common an octal number in

columns 73-78. This number, called the error number, can be looked up in

a table of error numbers published separately from this manual, which is

available to manual holders and at the console of each machine on which

IVY is run. This table, arranged in numerical order, gives a complete

description of the error which caused the diagnostic printout. The table

is not included here both because of its length and because from time to

time additions to, corrections of, and deletions from the table will take

place. The details of the rest of the error printout for each routine

are described in this chapter in a brief manner so that the other informa-

tion in a diagnostic line can be easily interpreted.

A. “#ID” prints as follows:

1. Columns 1-72: contents of the
was detected, if possible. If
either the card is the ssme as
vious error occurred, or else the card contents ar& not
available to “&D.” In the latter case the type of

card on which the error
these columns are blank,
the one on which a pre-

-157-

2.

3.

4.

error indicated, and the other information printed on the line,
are usually sufficient to localize the error.

Columns 73-78, the error number described above.

Columns 79-84, an alphanumeric symbol to help locate the error
on the card printed in columns 1-72. In some cases, this is
the symbol for the formula set or formula in which the error
occurred. In others this is the last data symbol encountered
on the card before the error was detected.

Columns 85-120, other information, where possible, to help lo-
calize the error. For instance, if “L” c-&ds are-being l~aded,
columns 85-9o contain the mnemonic code for the operation which
caused the error indication. In all cases, the explanation of
the octal error nwnber describes the information which appears.

When data or remarks are being loaded, any error in the definition

of a block or in its loading causes the contnl word to be flagged. When

code is

roneous

fers to

case of

being loaded or assembled, errors caused by referring to such er-

data are caught, and the guilty instructions are replaced by trans-

return control to IVYe The same procedure is foldowed in the

errors peculiar to the code itself. When calling sequence blocks

are being loaded, an

causes the erroneous

when detected by the

error of some sort in a calling sequence word entry

word to be replaced by a word of all ones, which,

subroutine using the calling sequence, causes an

error indication, and in some cases, causes

(e.g., in’’$TP,“ “@P,” etc.).

B. The form of the error diagnostic

control to be given to IVY

for “#AP” is similar to that

for “@D,” except that in many cases the

be printed in columns 1-72. This program

by printing additional information in the

nostic.

card image is not available to

makes up for these difficulties

remaining columns of the diag-

c. “~TP” and “@DK” print diagnostics as follows:

1. Columns I-72 contain, when possible, the ID of the record
being written in the form of an octal number prefixed by
“ID=,“ and the tape number, i.e., the IVY number as well
as the channel and unit number on the machine being used.

2. Columns 73-78, as usual, contain the octal error number.

3. Columns 79-84 contain the alphanumeric portion of the
“#W” part of last calling sequence word encountered
before the error was detected.

D. “##D” prints only an octal error number and the symbol of

the last block dumped before the error was detected.

E. “@R” and “$PH” print the octal error number in columns 73-

78, and usually a symbol in columns 79-84. This symbol may be the name

of an erroneous format statement or the last block encountered in the

calling sequence. In some cases it represents the alphanumeric part of

an illegal “@XX” calling sequence command. Which of these it repre-

sents is always explained in the error number description.

F. “@P” and “~CM” also print merely the octal error number and

a symbol which may represent the alphanumeric part of a “j?!XXX”calling

sequence entry or the name of a block. The error description table ex-

plains how this symbol should be interpreted.

Other than the detailed description of the interpretation of

error numbers, little else can be said about error diagnostics. The

above information, plus what has been said about the error detection

procedures of the various subroutines described in Chapter 6, should

suffice to enlighten the programmer on erectly what error he has com-

mitted when this Information is combined with the error number tables.

-159-

1

In general it has been found that a great variety of rather specific

errors can be spotlighted by this method. If,instead, a line containing

a comment describing the error were printed, each

considerable space in core and hence errors noted

general. Although the IVY number system presents

until he learns the more common error numbers and

nevertheless makes the location of errors (often rather difficult in some

other coding systems) a fairly trivial matter. The further advantage of

IVY, that a code containing errors may be executed until an erroneous in-

struction is encountered, greatly simplifies the

and, indeed, is an ideal system for the class of

is an extremely large subset of the class of all

checking is in general a simple process which does not take a large

fraction of time away from the IVY program so that coders with debugged

decks may also run with advantage in the IVY system.

It should be noted that IVY by no means is able to detect all

possible errors because of space and time limitations. More subtle er-

rors, and particularly, coding errors involving e.g.j index 100PS which

have large enough limits to destroy parts of the code and other errors

in method, can be detected and corrected only by a human being. Thus,

the complete absence of error diagnostics is no guarantee that a code is

debugged. Only the successful running of a code to completion with the

corresponding production of correct results is a guarantee of this; and,

indeed, such a run guarantees only that the part of the code executed is

1 debugged.

-160-

comment would take up

would be fewer and more

more work for the coder,

their meanings, it

process of debugging

fal~ble coders which

coders. And yet, error

A further note of caution is now appropriate: although IVY may

not detect a certain error, in many cases the undetected error will cause

an error indication to be generated on some subsequent instruction which

appears to be correct. Detectable errors may also produce this phenomenon.

In a case like this it is advisable to examine the place at which the

generated error printout occurred and work backwards from this point,

both sequentially and in s, non-sequential fashion to the data blocks

and other locations referred to by the instruction on which the diag-

nostic occurs. In this manner the true source of generated error

diagnostics can usually be found.

-161-

CHAPTER 8

CODING EXAMPLES

Coding efficientl~. Coding in an efficient manner is largely an

acquired characteristic and cannot really be taught except by experience.

Neverthelessj a few tips can usually be given on virtually any system

which will accelerate this learning process. Hence the first section of

this chapter is dedicated to coding efficiency. An efficient code is

defined as a code which, when translated to machine language, optimizes

a number of quantities: the number of machine instructions which should
.

be minimized; the execution time of the code which should again be a

minimum; the ability of a code to produce accurate results which should

be as great as possible; and the conciseness of the code which should

be as great as possible, both to facilitate understanding of it by per-

sons other than the original coder and to simplify debugging. Thus we

see that constructing an efficient code presents a rather complex mini-

max problem the solution of which is by no means trivial. Nevertheless,

it can be approached rather closely by the experienced coder; the follow-

ing considerations should aid considerably in producing an efficient

code.

-162-

1. Minimizing the number of machine instructions. To do this, a

programer must for the moment forget that he is human and try to think

as a machine. A few simple rules will illustrate this:

a. Although IVY allows

ber of index registers, if more

contains (three on’the 7090 and

for the use of an almost unlimited num-

are specified than a particular machine

fifteen on the 7030), a corresponding

increase in the length of the code is required to simulate the extra in-

dex registers. If, however, one does need more index registers than

are provided physically, it is more efficient to allow for this number

on the “S” card and let “IVYhandle the problem than to specify, e.g.,

three, and do all the necessary storing and restoring in the algebraic

language.

b. If an algebraic expression occurs

larger statements, it is advisable to compute

as a part of two or more

this expression first in

terms of some symbol and use the symbol, rather than the expression, in

the larger statements of which it is a part. For example, the following

is an exsmple of an inefficient

IIA1.2=c(@w)+cx(I)+cxx(M),

Coded efficiently, this example

code:

A2.2=c(#W)+cx(I)+cxx(M)-cx(K)+cx(J),

appears as follows:

IITl=C(@W)+CX(I)+CXX(M),A1.2=T1,A2.2=T1-CX(K)+CX(J),

where “T1” is some suitably chosen temporary location.

c. In the case where a quotient contains a complicated expression

-163-

in the denominator, a person using a hand calculator will usually com-

pute the denominator first, write it down, compute the numerator, then

while the result is still on the dials, divide by the denominator. This

is more efficient than computing the numerator first since in the latter

case one must write down two numbers. Electronic computers work in the

same way. Therefore ~ provides the reciprocal divide operation “//,”

which should be used whenever a relatively complicated expression appears

in the denominator. For instance, some inefficient expressions are

IIG=C+B/(lME+F), H=B+C/(D+E)+F,

efficient expressions for the same things are:

IIG=D*E+F//C+B, H=D+E//(B+C)+F

d. To generalize a bit on the above, two expressions can often be

written with different arrangements of terms and parentheses. In general.

the one with fewer parentheses is always more efficient than the other.

Most often, each set of parentheses in an IVY expression causes a “store”

instruction to be generated. Hence, the fewer parentheses an expression

contains, the shorter the machine language code. For example:

inefficient: -C2+((C2+$++2-(h.@Cl*C3))‘$R)/(2.~Cl)

efficient: 2.&Cl//C2*2-(4.@Cl*C3)*#R-C2

e. Another point to consider under this heading is the relation

between storage used for code and storage used for data. Generally, if

one is decreased the other increases, but not necessarily in direct

-164-

I

proportion. For example, in using the “#J”

bly of one of two alternative formulas (page

convention to skip the assem-

104), giving up one location

for a parameter to control this can save

tive formula would occupy if assembled.

often save a considerable number of data

many locations that the alterna-

Andj on the other hand, one can

locations by using double-stored

data. The code will be lengthened, of course, by the use of instructions

which refer only to the “Q” or to the “T” portions of these numbers, thus

producing what one might call a less efficient code; but the increase in

the length of the code will usually not be as great as the decrease in the

length of the data, and if the amount of storage used rather than the

speed of the code is the paramount consideration, then the use of double-

stored data Is definitely advisable.

2. Minimizing the running time of a code. This is a very elusive

technique to develop, and there are two rather contradictory methods for

doing it. One is to reduce the length of the program using the techniques

described in 1 above. The other is to increase the length of the code by

avoiding index loops and subroutines as much as possible. It is usually

best to compromise on

routines increase the

shorter and by making

the latter method, since adding index loops and sub-

efficiency of the code in other ways by making it

it easier to read. No really hard and fast rules can

be given here - the programer himself must consider his own peculiar re-

quirements of length, speed, simplicity, etc., to reach a decision. Only a

very short and simple code can be truly optimized one hundred percent with

respect to speed.

-I65-

3. Producing accurate results. Results can be affected not only by

cumulative errors resulting from roundoff and truncation, but also by er-

rors resulting from the inherent accuracy of the method used. The latter

can be obtained from any good text on numerical analysis. About roundoff

and truncation errors, however, little is known, but a few simple rules

can be stated which help to minimize errors from this source.

a. When adding together a table of floating point numbers, the

smaller numbers should be added in first. The cumulative effect of these

numbers may change the result of the calculation, but might pass unnoticed

if the larger numbers are first combined to produce a number compared to

which each of the smaller numbers taken alone is not significant.

b. Along the same lines, when any assortment of numbers is be-

ing combined arithmetically, it is best to combine numbers of approximately

the same order of magnitude before working up to higher order results.

This point is made nmre clear by a consideration of the evaluation of a

polynomial, e.g., of fourth degree:

inefficient: c5*(YM+4)+(c4*(Y+R+3))+(c3*(Y**Y2)+(c2*Y)+C1

efficient: c5*y+c4*y+cyyg3*y+cpyc 1

In this case, the number of parentheses also indicates the relative inef-

fiency of the first example. However, in the following example (in which

a number is raised to the 5/2 power) there are no parentheses to give a

clue. The efficient way of writing the operation, however, contains

fewer operations:

-166-

inefficient: AX.$E*5 or AX**5.$R

efficient: AX.@R*AX*AX

The following example can be given to illustrate an efficient way of com-

puting the difference of the squares of two numbers:

inefficient: y**2-(z**2)

efficient: y-z*(y+z)

The latter will give greater accuracy because it follows the rule of mul-

tiplying the two numbers of roughly the same order of magnitude, whereas

in the first expression the two numbers may differ considerably more in

order of magnitude. Thus, to compute, for instance, the expression

2
- 13x5/2, we use the following sequence:

IITl=AX.$R.#R*AX,T2=BX.~R.#NBX, RESULT=T1-T2*(T1+T2),

Although a great variety of examples can be paraded forth to illustrate

this type of efficiency, it is hoped that the above will be sufficient.

k. Conciseness of the code. An extremely concise code is usually

not efficient from the standpoint of speed but a concise code has other

advantages such as readability, aesthetic beauty, and — especially im-

portant for some coders — compactness. Furthermore, a concise code is

often easier to debug than one which sprawls out like some sort of enor-

mous octopus. The following rules should be observed to a greater or

lesser degree depending on the conciseness desired:

a. Wherever possible, loops should be used to evaluate ex-

pressions where repetitious operations occur. Although 100PS are slower

-I67-

in execution than linear

machine language code.

nomial of degree N:

sequences, they produce a beautifully

For instance, consider the evaluation

compact

of a poly-

inefficient: IIRESULT=C(N+l)*Y+C(N)*Y+...+C(3)*YC+(2)*YW(l),...

efficient: I]RESULT=C(N+l),X1(N,l),RESULT=~*Y+2(Xl),(x1),...

b. The same sequence of instructions, even if operating on

different quantities, need never appear twice. Instead, the calculation

being performed can be coded as a subroutine, entered from any point in

the code where this calculation is desired. By subroutinizing a code so

that each part of it has a separate function to perform, debugging is

greatly simplified, too, since abnormalities in the results can be

quickly traced to the guilty subroutine. The formula set-formula-local

entry structure of IVY makes it singularly trivial, and almost compulsory,

to code in this manner.

The use of index multiples. (For review, the reader is referred

to Chapter 3, page m, where index multiples are fir$t discussed=)

Suppose, for example, that an array “G” and its index multiples “GX” and

“GXX” are defined as follows:

DIG(AT, BT, CT),GX(BT)=(M)AT,GXX(CT)=(M)AT*BT,...

Suppose, now, that we wish to compute a quantity “D” involving the ele-

ment of “G” having indices (3, 2, 6). Then either of the fo~o~ng se-

quences of instructions can be used:

I]X1=3+GX(2)+GXX(6),DIG+...

-16a-

or

IIA1.I=G(#wP+Mx(2)+Gxx(6), D=G(AI)+.● .

In either case, the

(l*~)+(5*BT) which

page 54.

address given for the element of “G” iS G($WA)+3+

corresponds to the general formula in Chapter 3,

If, now, we wish to address

array “G,“ we can do so in any of

a general element (i, j, k) of the

the following ways. (Let us assume

that i is inXl, j is inX2, andk is in X3):

1. IIX4=X1+GX(X2)+GXX(X3),DIG+...

2. IIA1.l=G(#W)+Xl+GX(X2)+GXX(X3),DIG+...

3* I]A1.l=G(#W)+GX(X2)+GXX(X3),D=G(XI+A1)+...

and so on. As can be seen, there are a great variety of ways in which a

general element of an array can be addressed. Each is best for its own

particular purpose. The decision of which of the above to use, or whether

to use another method, is up to the programmer. For exmple, we recall

that arrays such as “G” are stored column-wise, i.e., the first index

varies most rapidly. Method 3 can be used when we wish to operate on the

elements of a particular column or columns of an array in order, indexed

by Xl. For instance, the example in Chapter 4, page 78, illustrates a

method of operating on the two-dimensional matrices which make up the

three-dimensionalblock “C.”

Index loops. We encountered our first example of an index loop in

Chapter 4, page 92. There the index ran between two values, one of which

-169-

was 1 and the other of which was a parameter algebra expression, thus:

xn(l,P),..o or xn(P,l),...

● ●

(Xn;,... (Xn);...

If one desires to set up an index loop between parameter limits one of

which is not 1, and/or increment the

form for doing this as we learned in

index by values other than kl, the

Chapter ~, page 99, is as follows:

Xn=N1,Lm,o..

.

.

.

Xn=Xn+N2, (Lm)Xn-N3<,...

n, N2 is the increment (positive orwhere N, is the initial value of X

negative), and N
3
is the final value of Xn. “C” represents some appro-

priate condition for the branch. We note that the Ni must be parameters

since the dynamic modifier “A” is not present. An example of this type

of index loop is given in the next section of this chapter, page 172.

To construct an index loop in which any of the Ni as shown above

are

the

‘2’

computed or dynamic quantities, the modifier “.A’*must occur after

index register symbol left of the equal sign. For example, if Nl,

and N are all computed quantities, the following is used:
3

Xn.A=N1,Lm,...

●

✎

✎

Xn.A=Xn+N2, (Lm,A)xn-N5=C,...

-170-

Thus,

fier,

with the use, where necessary, of the “L~“ entry and the “.A” modi-

complete flexibility can be attained in writing index loops.

Double Stored numbers. The entry of double-stored numbers on “E”

cards, and some motivations for their use, e.g., to use the tags to spe-

cify boundary and interior points, etc., have been discussed in Chapter 3,

pages fi-59. If it is a simple case of distinguishing between boundary

and interior points, only a one-bit tag is needed.

boundaries have different conditions on them, more

Again, the choice of how many tag bits to use in a

If, however, the

tag bits are needed.

double stored block

is the programmers. Of course, the fewer tag bits used, the greater

the accuracy of the high-order or “Q” portion of the number. One should

recall that the length of the tag can be minimized by considering that

only four tag bits, for instance, are needed to

tions, and not fifteen bits. Where a number of

are specified by the tag bits, one can load the

specify fifteen condi-

different alternatives

contents of the tag into

an index register and go to a transfer table which carries control to

the various alternative routines, as shown in the following example

(where the tag length is 3, but the tags take on only the five values

o, 1,=.=, 4):

ll====t
C LOADACURRENT aTAr3Al NTO*X1. AG ‘T ‘TT.

t- (SP, RC)

111~ ($ P,RD)

[$ P,RE)

II 11- LI. X3, X3= X3+ XI, (X3+I]
*

1111

IHII

1111

1111

-171-

The next example illustrates a parabolic rule integration (a spe-

cial case of Simpson’s rule for equal intervals of the independent var-

iable). Here it is assumed that the block “F@” contains N+l values of

the function f(x) to be integrated in order of increasing x. N is an

even integer and the interval in x between values of the function f(x)

is 2h where h is contained in the location represented by the symbol “H.”

We further assume that the block “F@” is double-stored with a tag length

of two bits. f(x) and f(~) have tags of 2, f(x2i) have tags of zero,

and f(x2i+1) have tags of 1. The integration, the result of which is

placed in “TI,” proceeds as

this type of integration is

I=

illustrated. Recall that the formuh for

; (f,+4f2+2f~+● ..+4fN+fN+1)●

1111Li e HI
I c PARAB@LIC h INTEGRATION.

Ill 2 I Tl=o, xl= l,x2=F0($wc), I I
3 LI, X3=F(?J(XI,T.2),(L2)X3=0,

II
4 (L3)X3-1 =0, IL>
5 Tl=F@(Xl,Q.2)+$M, L4,Xl=Xl +1,

2 w LII 6 X2 =X2-I,(LI)X2=NZ,(L5),

7 L2, TI=2.0* F(ZJ(XI,Q.2)+$ M,(L4),
<“ ~

II 8 ‘1 L3, TI=4.0* FO (XI, Q.2)+$M, (L4),
e

L5, TI= $M *H/3.0,... ~

I 191 I Ill

H

II
II

II

II
II

-172-

Note the use of “L1” to simulate

in the previous section, is best

an index loop. Tnis technique, described

used when an index register runs between

computed values or values for which there exist no symbols. If, of course,

we have a parameter M which gives the length of the “F@” block, we can

replace the last expression in line 2 with “X2(M,1),” and the first two

expressions in line 6 with ’lX2),”.

A complete IVY code. The reader is now referred to the complete

code illustrated on page 4 which is our next subject for discussion. This

program, although short and simple, illustrates principles which are fol-

lowed in any IVY code, regardless of length or complexity, as well as dem-

onstrating some further coding techniques.

First of all, the gross organization of an IVY code is illustrated

in the example. This organization is as follows:

1.

2.

39

4.

5*

“*” card to identify output. In this case off-line output
is not produced, but the contents of the “*” card will be
printed on-line to identify the printout. This is also
useful for logging purposes.

“S” card to initialize program. Note that no formulas
occur in either formula set and that there are no store
addresses. Four index registers and three local entries
are used, and two numbered symbols “R” are specified.

“D” cards. In this example we both define and load the
two vectors “A@” and “B@,” name the two formula sets
“FIOW” and “SUBR,” and set aside one word for temporary,
called “T.”

“R” cards, which load two remarks: a format statement and
a comment. The error comment is not really necessary in
this case since the vectors obviously have equal counts.
It is entered for illustrative purposes.

If any “K” cards were entered, they would occur next in
sequence.

-173-

6. “A” card to write the first formula set on tape 2, file 1.

7* “I” cards entering the first formula set, called “FI@W.”

8. An “A” card to write the second formula set on tape 2, file 2.

9. “I” cards entering the second formula set, called “SUER.”

10. “A” card to read in and assemble the first formuk Set.
Note that an “X” card is not necessary since “F@W” ends
with an execute statement.

11. If more data were to be loaded, “E” cards and “X” cards would
occur after the last “A” card.

Let us now consider the code in more detail.

mula set is preceded by an “A” card to place it on

this short, both formula sets can be placed in the

by using only one “A” card in front of “FI,#W,”and

statement on line 13 down to the end of “SUBR,” on

We note that each for-

tape 2. In a code

same file, if desired,

moving the execute

line 220 However, the

procedure shown here is equally valid, and is especially useful for lon-

ger codes.

In all IVY codes, long as well as short, there should be a flow code

as in this one; hence the choice of the name “F@W.” The flow code is a

formula set, the function of which is to control the loading of data and

the conversion of other formula sets, as well as the access to and from

the other formula sets of the program which should be semi-independenten-

tities. Thus we note, as in the simple example, that the flow code con-

sists mainly of branches and calling sequences to subroutines, supplied

either by the coder or by IVY. Ionger progams will of course have lon-

ger and more detailed flow codes constructed from a number of formulas,

which test various parameters and branch to various formula sets depending

-174-

on the values of these parameters. Thus the flow code acts as a sort of

traffic policeman, directing the flow of control along the paths desired

in a particular run.

In the case of a code of such length that the entire program will

not fit into memory at one time, the flow code can also assume the role

of monitor, directing the allocation of memory space, altering control

words, and reading new formula sets into the space formerly occupied by

others whose purpose is completed. Coding examples involving this partic-

ular technique occur in Appendix 1,since they are of little interest to

most coders.

In the flow code of our example, the assembly program “@P” is

first entered to convert the subroutine “SUBR” into machine language.

Control is then returned to “F@W” which executes a pathfinder branch

to “SUBR.” Note that at the time “F@W” is converted, this pathfinder

branch has not yet been assigned an address since “SUBR” is not yet

converted. When “FL@W” goes to “@P,” however, this address is com-

puted and inserted. Thus it is perfectly legal for a code to contain

branches to unconvertedroutines as long as the routines are converted

before branch references to them are executed as is true in this case.

The calling sequence to “SUBR” contains the control words of two

vectors “A@” and “BP” of which the dot product, i.e., the sum of the

products of corresponding elements is desired, and the address of a

location “T1” where the result is to be stored. The error return con-

tains, as required, a pathfinder branch to a location which prints out

-175-

an error comment. If control returns to the normal return, the result

is printed on-line. In either case, at the end of the program,control

is returned to IVY by the pathfinder branch

,(@P,@D),

which, we recall.,must always be the last executed instruction in any

IVY code. The loading program selects the reader or off-line tape in an

attempt to find the next IVY code, and if none exists, a halt occurs.

The subroutine first causes the pathfinder contents to be placed

in X4, then sets up a temporary block “~D” four words long. Index regis-

ters are stored in the first three, and the dot product is accumulated

in “~D4,” from where it is later transferred to “TI.” The information

in the calling sequence is examined and if found in error, the contents

of X4 are decreased by one so that the exit is modified to cause con-

trol to return to the error return. Otherwise, the computation is com-

pleted and control returns normally.

140rediscussion of IVY calling sequences. In Chapter 6 we con-

sidered in detail the calling sequences to IVY internal subroutines.

However, this section is designed primarily to consider subroutines

which the programmer has coded and the techniques of constructing and

handling these programmer calling sequences. This discussion supple-

ments in more detail what has been said in Chapter 5, pages 105-110, On

calling sequences.

Usually the “$#A” portion of a calling sequence word contains an

address or count, and this address or count is best used in an index

-176-

1

register for address modification or for counting purposes. One may ob-

serve both of these in the illustrative example discussed in the

previous section. Either of the entries

:SYMB~L(@W): or :SYMB@L($!!WA):

causes the control word address to be placed in the “@WA” portion of the

calling sequence word;

dress is one less than

of the illustration,we

it should be recalled that the control word ad-

the base address of the block. Thus, in line 18

see the two expressions “@Z(X2+l)” and “#Z(X>l)”

occurring. We also see on line 10, the entry “T(#WA)+l” in the calling

sequence which gives the true address of “TI,” and hence this is re-

ferred to in line 20 as ’~Z(Xl)”. To load the “~WA” portion of a calling

sequence word

der contents,

into an index register “Xm” if “Xn” contains the pathfin-

either of the following entires may be used:

Xm = #Z(Xn+N), or Xm = ~Z(X +N, ~WA).
n

In other words, the index register is normally loaded from the “@WA” por-

tion if nothing else is specified. However, the latter entry is recom-

mended to avoid confusion.

A parameter, literal,

pression may also be entered

word by one of the entires

or the result of a parameter algebra ex-

in the “@WA” portion of a calling sequence

:SYMB@L: or

where “N” represents a fixed point literal

-177-

:N: or :P:

and “P” represents a parameter

algebra expression. This number may be used in arithmetic or loaded into

15 18
an index register if it is less than 2 on the 7090, 2 on the 7030.

If loaded into an index register, again the “@A” modifier is recommended

though not necessary. If used in arithmetic, and if a ‘t@ZUC”entry

occurs in the same calling sequence word, the “~WA” modifier must be

used to mask out the “@XX” portion of

A quantity can be placed in the

quence word by either of the entries

:SYMB@L(@) :

the word.

“#WC” portion of a calling se-

er :@XXX:

where “XXX” represents one, two, or three alphanumeric characters. In

the first entry, the control word count of “SYMB~L” appears in the “SWC”

portion of the calling

into an index register

entry

sequence word, and in general this will be loaded

for counting or testing purposes by means of the

Xm = #Z(Xn+N, @C),

as we see in line 16 of the illustration. The “$WC” modifier must be

present. If, however, a “&XX” entry occurs, it can be loaded into an

index register on the 7090 only if there are one or two characters since

three characters occupy 18 bits. In most cases two characters are per-

fectly sufficient for the coder’s purposes so this can be done with

impunity. The XIS can then be tested for control purposes by using con-

ditional branches dependent on dynamic index arithmetic expressions.

For example, if the entry in calling sequence word 5 consists of only

-178-

.

one character, we might test whether

ing:

The decimal

page 186.

its

the

xl = j!fz(x4+5,

representation of “X” is

this character is “S” by the follow-

@wC), (LI)X1-50 = O,...

obtained from Table 9.1, Chapter 9,

If the “@XX” entry contains three characters,

value using fixed point arithmetic. For example,

fourth entry in a calling sequence for “ABC,” the

it is best to test

if we wish to test

following should

be used:

(L1)#z(x4+4,@WC)-17*64*64-18*64-19 = O

or simply (and more efficiently)

(L1-)#Z(X4+4,$WC)-70803 = O,

where again the decimal representations of “A,” “B,” and “C” are ob-

tained

quence

trated

from Table 9.1.

Constructing a variable length calling sequence. A calling se-

which always contains a fixed number of words such as that illus-

presents no particular problems. The subroutine is simply coded

to take this length into account, and always returns

or exits immediately following the calling sequence.

programmer wishes to code a subroutine the length of

quence varies from one entry to another, a number of

these are discussed in this section.

control to an exit

However, if the

whose calling se-

problems arise, and

1. How to tell when the end of the calling sequence has been

-179-

reached:

a. The

quences on “K”

easiest metfiodof doing this is

cards, and to set up pathfinder

to place

branches

the calling se-

to the subroutine

in this fashion:

(#P, SUBRTN: KNAME(@W)),...

where “KNAME” is the symbol of the calling sequence block which co~itains

the particular calling sequence desired for this block. Then the sub-

routine, in outline, will look as follows:

1111 11111

I SUBRTN:XI, X2= $iE(Xl+l,SWC), X3=SZ(XI+I,$WA),

1111 Ll,... 11111
X2= X2-I, X3=X3+I,(LI)X2 =NZ,,.. (exit)

1111 11111

The count and address of the “K” block are loaded into separate index

registers, and the current calling sequence word can be addressed by

“7X(X>l)” with “@WA” and “#WC” modifiers, if needed. At the end of

the routine the count is decreased by 1, the address is increased by 1,

and control is returned

not zero; otherwise, an

calling sequence on “K”

length calling sequence

to the start of the subroutine if the count is

exit is performed.

cards allows us to

by using the count

b. If one does not wish to use “K”

can be included in the code, thus:

Thus, we see that putting

detect the end of a variable

of the block.

blocks, the calling sequences

-180-

(#p,mRTN:cwl :cw2:...:cwN), o..

where each “CSW~“ is some calling sequence word entry. The problem of

detecting the end of the calling sequence then becomes more acute. How-

ever, the problem can be solved in one of the following ways:

(1). The first calling sequence word can contain a param-
eter which tells the number of remaining calling
sequence words.

(2). The last calling sequence word can differ from all other
calling sequence words in an easily detectable manner,
e.g., by containing a special “@XX” different from all
others. A zero word is easily detectable, and can be
entered by using

:~,o:

as the last word in the calling sequence.

2. How to move forward through a calling sequence: If an index

register is loaded with the location of the first calling sequence word,

either from the pathfinder or from the control word of a “K” block, one

can advance forward through the calling sequence either by advancing the

index register by one each time a new calling sequence word is desired,

or by using the contents of the index register to compute a stored address

which is incremented by 1 each time a new word is desired, e.g., by the

following technique:

Ll,A1.n = Xm+l,

●

●

9

Xm = Xm+l,(Ll),...

-18I-

where Xm contains initially the location of the first calling sequence

word, minus one, and “n” is the number of times the stored address “Al”

is used.

Constructing a calling sequence block. The final topic in this

chapter will be a consideration of the construction of calling sequence

blocks. It should be recalled from Chapter 3, page 64, that calling se-

quence blocks entered on “K” cards canbe assigned without being loaded

with information; or such blocks may be only @rtially Ioaded with in-

formation. The programmer can then construct these blocks as he wishes,

using only IVY algebraic instructions. Suppose the name of such a block

is “KNAME,“ and we wish to construct a calling sequence word in the Nth

position of this block. Thenwe can do this in any one of a variety of

ways, for example:

KNAME(N,M) = expression,

Xi = N,KNAME(Xi,M) = expression,

‘i =
KNAME(@WA),@Z(Xi+N,M) = expression,

and so on. “M” is one of the mxiifiers “#WA” or “#WC,” or maybe

omitted in some cases. The following examples will serve to illuminate

the reader on the techniques involved:

10 To insert a “?~” entry: Suppose we wish to enter the

expression “#ABC” in calling sequence word N. This can be done as

lows:

KNAME(N,#WC) = 17*64%4 + (I&@)+lg,

-182-

fol-

or more simply,

where the decimal

tained from Table

quired here.

KNAME(N,@C) =

representations

9.1, page 1860

70803,

of the characters A, B, and C are ob-

Note that the “#WC” modifier is ~-

2. To insert the control word of a

KNAME(N) = SYMB@L(#W),

where no modifier is required on the left.

symbol:

Similarly, one may enter a

control word modified by a psnmeter algebra expression as follows:

KMME(N) = SYMBOL+ P,

3. To insert the control word address or control word count ofa

symbol in the “~WA” portion:

=(N,#WA) = SYMBOL(@A) ,

or

lWIME(N,$WA) = SYMB@L(*C),

These expressions may also be modified by parameter algebra if desired.

4. To modi~ either the “@A” or “#WC” portion of an already

existing calling sequence word by some expression:

KNAME(N,#WA) = #M+P

or

KNAME(N+~WC) = @+P

and so on. In general, by the use of such expressions, one can produce

-183-

considerably more calling sequence words than by actually entering the

word on the “K” card.

of course,permissible

quences to any of the

duce atypical calling

Such unconventional cal~ng sequence words are,

as long as they do not occur in the calling se-

~ “#” routines. Examples of entries which pro-

sequence

KNAME(N,@C)

KNAME(N,$WA)

KNAME(N)

and so on.

It should be emphasized

by using “@CM,” the character

words are as follows:

SYMB@L (#WA),

SYl@L,(@WA)+SYMB@L2(#WC)j

3.1415926535*RA.DIus

that calling sequences

manipulation routine.

blocks are entirely different in form and in

Thus only the techniques discussed above can

blocks.

Conclusion. These few coding

get the IVY programmer off to a good

be developed with experience, and in

contents

cannot be modified

Calling sequence

from remark blocks.

be used to modify these

examples should prove sufficient to

start. Many other techniques can

general it is easier to do this

with IVY than with most other programming systems. IVY combines the ad-

vantage of being an ideal system both for the beginning coder and for

the virtuoso: for the former because it is a simple system in which it

is almost impossible not to code properly; for the latter because of the

abundance of sophisticated techniques which are available.

-184-

CHAFTER 9

SUMMARY AND TABLES

This chapter is intended to be a thumbnail sketch of the IVY man-

ual. In it are gathered taoles and summaries of the information covered

in the first eight chapters for quick reference purposes. Nothing occurs

here that has not occurred previously, but virtually any topic in the

manual can be found in this chapter quickly and easily; page references

to complete, more detailed discussion are always given.

-185-

1.

2.

30

4.

mum 9.2

IVY SYMBOLS

Special symbols: A (stored addresses),

L (local references within formulas), X (index registers).

See Chapter 2, pages 28-29.

Program defined symbols: One to six

except A, X, and L. Must be defined

a. Formula name

b. Single character used for

c. Nsme of remark

See Chapter 1, page 17and Chapter 3,

alphabetic characters

on “D” cards unless:

renaming index register

pages47-49.

Numbered symbols: a symbol of type 2 followed by numeric

digits. Defined on “S” cards and used only for names of re-

mark and calling sequence blocks. See Chapter 1, page la

Chapter 2, page 29, and Chapter 3, pages 61-67.

Internal IVY symbols: begin with “$” and consist of O, 1,

or 2 alphanumeric characters. These symbols are as follows:

SYMBOL MEANING AND USE PAGE REFERENCE

$ Sign; address modifier and opera-
tion (e.g. “+ ~,” etc.)

@ Control word; address modifier
$WA
$Wc

Control word address; adtiess modifier
Control word count; address modifier

* Control word position; address modifier
---- ---- ---- ---- ---- ---- ----

@x Convert arithmetic; operation
Convert exponent; operation

#u Set result; operation
* Set result; operation

69,81

69,87
69,87
69,87
69,87

-187-

TABLE 9.2 (Continued)

SYMBOL

@R
~x
---- ----

j$Q
ST
----- ---

@D,~DA,...$Dz
$cS

----- ---

----- ---

MEANING AND USE

Square root; operation
Set result; operation
----- -“--- ----- --

“Q” portion; expression modifier
“T” portion; expression modifier
---- ---- ---- ---- -

Address; subroutine data blocks
Address; calling sequence block
Address; machine information
Address; zero
Address; quantity to left of “=”
---- ---- ---- ---- -

Execute; instruction to compiler
Jump; instruction to compiler

PAGE REFERENCE

69,87
89

-.--- ---

83
83

---- -----

85,110
84
85
85
84

----- ---

115
55,104

Pathfinder; special register 101,103,104
---- ---- ---- ---- ---

Assembly program; subroutine
Character manipulation; subroutine
Disk progrsm; subroutine
Loading program; subroutine
Microfilm plot; subroutine
Instructions to operator; subroutine
Octal dump; subroutine
E@ch; subroutine
Print; subroutine
Switch test; subroutine
Tape program; subroutine
Trigger test; subroutine

---- --

119
154
152
119
147
153
12g
126
131
126
121
128

-188-

TABLE 9.3

CARD FORMATS

1

*

B

s

P

D

R

K

$

T

A

I

L

F

x

E

PAGE
Format REFERENCE

* * *Min(3) nsme,ph.(19) no.(k) code(3) group(3) cat(2) 2~ 22-23---
MOOO tapes(2)

J@B,I@D,REEL, etc. 23-26

(N~),A(N2),x(N3),L(NJ),s~oL, (Nt3),... 26

s 30

SYMB@@MB@,SYMB@(N1,N2,Nn).SYMB#L(N1,....Nn)=Q1,...,Q 43-57
m

NAME(P) = Hj!kIERITH’’CHARACTERS”$ji@ 61-64

NAME(P) = (CSW1:CSW2:....CSWn) 64-67

INSTRUCTIONS 33

TSCW1:TCSJ2:....TCS%/n 33-35

jfRDH
@RN,F

35-37

Algebraic code, etc. 68-117

Longhand code, etc. Appendices 2,3

AD:~B,L:#A,M X-39

NAME @F F@MUIA SET OR BLANK 39-40

sYMBdL = Q1jQ2)...jQ#YMB@L(Q.P) = Q1,~,...Qi, S~~L(T.P)

I =Q1,e..,Qi 57”59

See also Table I, page 42, and Table II, pages 60-61.

-189-

TABLE 9.4

AIGEBRAIC OPERATIONS

FIOATING POINT FIXED POINT

+

*

**

/

//

+$
-$
*$
.$R

.#CA

.@J

.@J

+

*

-x+i-

/

//

+$
-$

.$3

.$CA

.j?fcx

INDEX REGISTER

+

.jfx

Boolean

+

+(-

See also: Floating point, page 69

Fixed point, page 86

Index register, page 89

Boolean, page 93

RUIE: All operations are considered from left to right, i.e., each
operation takes in all expressions so far computed on the
left to the right of a left parenthesis or equal sign, which-
ever occurs latest.

-190-

TABLE 9.5

SYMBOLS, EXCllLSIVEOF MODIFIERS, ALLOWED IN AIGEBRA

A.

TYPE OF SYMBOL

SYMB@L
SYMB@Ln
NAME

Symbols allowed on either side of equal sign

MEANING

Name of data block or first element
nth element of data block
Name of “K” block--numbered or not
Calling sequence block
Subroutine data blocks
nth element of subroutine data blocks
NLA (next loading address)
NBA (next block address)
Zero address
Index register n

B. Symbols allowed only on right side of equal sign

$Ll
$L2

FAC (first address for code)
FAD (first address for data)

#L5 Machine number
$L6 No. of BCD characters per word

@ @antity on left of equal sign

NOTES: (Types of symbol modifiers allowed - see Table 9.6):

1.

2.

3.

4.

NOTE

1
1
2
3
3

;
4
5
6

7

;
7
6

Either side of equal sign: type A; or type E (except “@P”)
left of equal sign: type A and type B
right of equal sign: ‘l@rp’tor type A and one of types C,D, or F.

Ssme types of modifiers as in note 1 with the addition that
type A can occur with “#WA” and “@C” on left or right of
equal sign.

Same types of modifiers as in note 1 except type E is not allowed.

Either side of equal sign: type A
left of equal sign: type A and type B
right of equal sign: type A ~ type F.

-191-

TABLE 9.5 (Continued)

NUI!ES:

5. Modifiers required.

Either side of equal sign: type A or type A plus “$WA” or “#WC.”
left of equal sign: type A and type B
right of equal sign: type A~d one of types C, D or F I

6. No modifiers allowed.

7. Type A or type A and one of types C, D or F.

-192-

MODI-
FIER

P

xn+P

Xn

An

Xn+An

A

B

Q.P

M.P.

T.P.

M

1

R

$

@A

$Wc

j4wP

s

A

A

A

A

A

B

B

c

c

c

D

D

D

E

E

E

E

F

TABLE 9.6

ADDRESS (OR SYMBOL) MODIFIERS M: “SYMS@L(M)“

MEANING LEFT OF= RIGHT uF= BOOLEAN FIXED PI’.

Pth element yes

above plus index yes

index register yes

stored address yes

above plus index yes

fixed pt.expression yes

Boolean expression yes

“Q” of double- no
stored no.

magnitude of above no

“T” of Double- no
stored no.

magnitude of no. no

sign only of no. no

save low order

control word

control word
address

part no

yes

yes

control word count yes

control word no
position

swap no

yes

yes

yes

yes

yes

no

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

no

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

FL.PI’.

yes

yes

yes

yes

yes

no

no

yes

yes

no

yes

yes

yes

no

no

no

no

yes

See also pages 74-83

-193-

TABLE 9.7

wumssIoNMoDrFmw (RIGHT OF EQUAL SIGN ONLY)

MODIFIXR

.#QoP

.@.P

MEANING

Put result in “Q” part

Put result in “T” part; may follow only

fixed point expressions

see also pages 83-84.

.194-

TABLE 9.8

REFERENCE POINT ENTRIES AND BRANCHES

A. Reference Point Entries

ENTRY

Xn(l,P)

Xn(P,1)

Ln

LnoXn

F@

F@lM.Xn

FS

FS.Xn

B. Types of Branches

(Xn)

(Ln)

(F@M)

(FS)

(Ln)Algebra=C

(F@M)Algebra=C
(=)Algebra=C }

($P,Ln)

(@P,F@RM)
(@P,FS) }

(Xm + N)

MEANING

Forwsrd index loop entry

Backward index loop entry

Iocal L-entry for references within formula

?kcal subroutine. Contents of “#P” go to Xn.

Formula entry for references within formula
set. “F@M” not on “D” card.

Formula subroutine C(#P) +Xn

Formula set entry for references from entire
code. “FS” on “D” card

Formula set subroutine.C(SP) +Xn

Loop on index X to nearest previous loop
entry for ?ndex Xn

Unconditional branches to L-entry in same
formula, formula in same set, and
formula set, respectively.

Conditional branches to L-entry in same for-
mula, formula in same set, and formuk
set, respectively

Pathfinder branches to local subroutine in
same formula, formula subroutine in
same set, and formula set subroutine,
respectively

Return to instruction after calling sequence
of subroutine

-195-

CALLING

TABLE 9.9

SEQUENCE CONVENTIONS

(Each entry represents a legal calling sequence word entered between
colons on “K” card or after pathfinder branch)

ENTRY MEANING

jhxx 1,2, or 3 alphanumeric characters in “$WC” portion. Used
for control purposes.

P par~eter algebra expression. Result is computed and ,.
placed in “@WA’’_portionor more, if greater than 2’>

AD(#W)+P “AD” any programmer-defined symbol. CW(AD) modified by
is placed in entire word.

AD(#WA)+P Control word address modifiedby P is placed in “#WA”
portion.

AD(#wc)i-P Control word count modified by P is placed in “#WA”
portion.

AD($WP) Control word position

AD(P) Contents of AD(#WA)+P

In addition, the following compound

is placed in “@WA” portion.

are placed in “$WA” portion.

entries are allowed:

9

P

@CX,P (P< 2’8)
@CC$AD(#WA)+P
jkxx,AD(@lc)+P
@xx,AD($wP)
@XCf,AD(P) (C(AD(@A)+P) fixed pt. ~ 218)

-196-

TABLE 9.10

SUMMARY OF CALLING SEQUENCES TO IVY SUBROUTINES

A. $AP

Calling seq. word

@DN,F

Calling seq. word(s)

j?hl)x
$IJ)x
$Ewx
@uLx
$EFX
$3!rx
$BBx,p
$BFx,P
@Bx,P
#FFx,P
@DX,AD(#WA)+P

@DX,AD(j!!WA)+P:
AE($WP)

MEANING

Read in and convert code in file F, tape N

Set tape “X” to high density
Set tape “X” to low density
Rewind tape “X” to load point
Rewind tape “X,” then unload
Write end-of-file on tape “X”
Write end-of-tape record on tape “X”
Backspace tape “X” through P records
Backspace tape “X” through P files
Forward space tape “X” through P records
Forward space tape “X” through P files
May be last calling sequence word onl .# If

ID of current record on tape “X = con-
tents of location specified, @CSl = 1.
If not, j!CSl= O.

Reads into block “AE” the record with ID =
c(AD(~WA)+P), from tape “X”

Sets “@!P” to run in parallel mode
Sets “$TP” to run in serial mode

For further reference see Table V
Chapter 6, pages 119-126.

, page 120(tape numbers), and

LJ!!z2
Calling sequence words

#P, AD(@P) :$R Print a diagnostic comment if any indicators
are on, and return control to problem
program

-197-

TABLE 9.10 (Continued)

- (continued)

Calling sequence words

#N:$R
~P.AD($WP):@I

@N:@

m

Calling sequence word

$DA
SYMB@L(SWP)

!&_@@li

Calling sequence word(s)

$1P
$2P
@DP
j#lT
#2T
$IYr
ji$lM
@M
j4DM
pP,REM(~wP)
@, REM(@wP)
@,r@@P)
@F,FORMAT(@wp)

R.mAR.K(@P)

VECTOR(@P)

j4PN,PARAM(@A)+p

j#2,MATRIX(@P):P

MEANING

No print; return to problem program
Print comment and return to IVY if

any indicators on
No print; return to IVY if any indi-

cators on

Dump
Dump

all data and longhand code
data block or longhand formula
set named

SPR MEANING

Restore page (on-line)
Half-page skip (on Mne)
Double space (on line)
Restore page (off-line)
Half-page skip (off-line)
Double space (off-line)
Restore page (microfilm)
Half-page skip (microfilm)
Double space (microfilm)
Print remark on-line
Print remark off-line
Print remark on microfilm
Format statement (see

note below)
Print remark as specified

by previous format
Print vector specified by

previous format
Print N parameters as spe-

cified by previous format

SPH MEANING

Insert blank card
Insert blank card
Insert blank card
Insert blank card
Insert blank card
Insert blank card
Insert blank card
Insert blank card
Insert blank card
Punch rem. on-line
Punch rem. off-line
Punch rem. off-line

Ssme

Punch same

Punch same, or
matrix or array

Ignored

Print matrix (with 1st dimen- Punch same (@2,P
sion P) as specified by are superfluous)
previous format

-198-

TABIE 9.10 (Continued)

EC @pH,~pR (continued)

Calling sequence word(s)

#A,ARRAY(SWP):Pl:P2

VECT@R(@P) :#D,P

vECT@R(@P) :$Q,,P

VECT@R(@P) :@T,P

j52,MATRIX(@P):#D,P1:P2

$2,MATRIx($wP): j4Q,p,:P2

ji42,MATRIX(@P):@T,P1:P2

#A,ARRAY(@WP):$D,P1:

‘2:‘3

#A,ARRAY($WP):IQ,PI:

‘2:‘3
#A,ARRAY($WP):$T,P1:

‘2:‘3

SPR MEANING

Print array(lst 2 dimensions
P1,P2) as specified by
previous format)

Print both Q and T portions

Print Q portion only of DS
vector, tag length P

Print T portion only of DS

vector, tag lengbh P
Print both Q and T portions

of DS matrix, tag length

‘1‘
1st dimension P2

Print Q portion only of DS
matrix

Print T portion only
of DS matrix

Print both Q and T portions
of DS array,tag length PI,

1st 2 ‘imensions ‘2)P3

Print Q portion
DS array

Print T portion
DS array

only of

only of

SPH MEANING

Punch same ($A,PI,
P2 are super-

fluous)

Punch same, or ma-
trix or array

Punch same, or ma-
trix or array

Punch same, or ma-

trix or array
Punch same (j!!2,P

sare superfluo s

Punch same (@2,P2
are superfluous)

Punch same (@2,P2
are superfluous)

Punch same (@,P2,P5
are superfluous)

Punch same (@ P P
are superfl;052)3

Punch same (#A,P2,P3
are superfluous)

Note on format statements: the general appearance of a format statement is as
follows:

——

RIF@MAT = C1C2...Cn,(W_1)~OS101~0~ ‘El ,...,(REMm)NmNSmSImIFmFEm,j$~$~$

where
each “Ci’trepresents one of the following conditions:

-199-

TABLE 9.10 (Continued)

Ci SPR MEANING—

P Print
T Print
M Print
c Print
R Print
L Print
F Print

on-line
off-line
on microfilm
column indices
row indices
in line format
fixed point num-

bers as integers

$ Print tags of DS nos.
in octal

The “IMM.REM4” are remarks consisting of up

SPU MEANING

Punch on-line
Punch off-lke
Punch off-line
Ignored
Ignored
Ignored
Punch fixed point nos.
as integers

Punch tags of DS nos.
in octal

to 119 holderith char-
.A

acters, with the single restriction that parentheses must occur in closed

pairs. These remarks are printed preceding the numbers governed by the

format,and are ignored by the punch program.

Each “N.S.I.F.E.” field controls the printing or punching of one or

more blocks of numbers as follows:

N Number of blocks controlled by this field.

s Number of blank spaces preceding each number
(ignored by “#lW”). must be~ 119.

I Number of integer digits (i.e., digits to the
left of the decimal point). must be ~ 15.

F Number of
right

E Number of

fraction digits (i.e., digits to the
of the decimal point). must be ~ 15.

digits in exponent. must be ~ 15.

For further details, see pages 131-147.

TABLE 9.10 (Continued)

E4fE
Calling sequence word(s)

@U?N,P

j?%G:PI:P2

j@:~D@@A)+P

@RN,REM(#WP) :R(#WA)+P1:
C($WA)+P2

#pFN,M:xc(@p) :Yc(#wP):
XYBDS($WA)+P:TEMP (@WP)

@A,xYBD@$wA)+p: xzER@(j#wA)+P:
YZER@(@A)+P

See also pages 147-152.

%?!!?!$

Calling sequence words

j4WRN,n($WA)+P:DATA(@P)

&DN,ID(#wA)+p: DATA(#wP)

MEANING

Advance film; if N = 1, set for ha,rdcopy;
advance “P” more frames.

Select grid, horizontal option “Pl,”
vertical option “P,..”

Valid only aft& abovezentry. Label grid,
assuming X

min’xmax’ymin’‘max
stored

in that order starting at “XYBDS($WA)+P.”
Write remark “REM” horizontally (N=O) or

vertically (N=l) starting at row and
column position specified.

Plot XC versus YC, using char. M, and connect
with line if N=l. XYBDS as above;
“TEMP” = block same length as XC,YC!
for erasable.

Generate a pair of axes through XZE@,
YZER@;XYBDS as above.

Write “DATA” block on disk with ID as
specified. N = tape number on
machines with no disk, O otherwise.

Read block with ID specified into “DATA.”
N as above .

=“ has one calling sequence word, of the form

REMARK(#WP)

The remark specified is printed on-line. See page 153.

-201-

TABLE 9.10 (Continued)

242!
Calling sequence word(s)

#sN,WK(@)

#MN:AD($WA)+P1:REMl(@P):
AE(SWA)+P2:m2(#WP)

#CN:AD(@A)+pl :=1 (@p):
AE(SWA)+P2:-(@p)

See pages 154-156.

MEANING

Set remark specified to the character
represented by decimal number “N”
(seeTable 9.1).

Move N characters from REMl to REM2,
positions as specified.

Compare N characters of REMl and REM2
positions as specified; if equal
#CSl=1, otherwise @CSl=0.

APPENDIX 1

MANIPULNI’INGTHE SYMBOL TABLE

The main function of this Appendix is to give a detailed descrip-

tion of how the symbol table can be altered and used in computations in-

volving only the TVY algebraic instruction set without recourse to longhand

instructions. More sophisticated computations can be performed using long-

hand instructions, but in general these will not be necessary. Presumably

symbol table manipulations will seldom if ever be used by most programmers;

they are useful only when codes are very long and complicated and extreme

methods of conserving core storage are necessary.

Handling a program which is too large to fit in the machine.

It often happens that the whole of an unusually long program, or one with

a large amount of data, will not fit into core at one time. A code of

this size, however, is quite easy to handle in the IVY system. First, the

code must be organized in a specific fashion: there must be a flow code,

in this case usually called a “master code,” which is in core at all

times, and which controls access to and conversion of the remainder of

the code, only a fraction of which is in core at one time. In this case

-203-

we assume that control passes through each of several portions of the

code only once. As an example of this, we shall consider a program con-

sisting of a master code and six formula sets “FSA,” “FIB,’’,...j’’FSF~”

to be executed in this

time. The master code

order of which only three can occupy core at one

for handling such a case can be diagramed as

follows:

mENTER

& EXECUTE FSA,
I CONVERT wi.

READ IN AND CONVERT
FSD, FSE,FSF INTO

+, >@

If we assume that the six formula sets occupy files 2-7 on tape 2,

code for doing this looks approximately as follows:

the

Line No.
I

II
2

II

3

1111
4

1111
5

1111

I MASTER,($P, SAP: $RD2,2: $RD2,3:$RD2,4),

c C@DEAEXECUTES ‘FSA,AFSB,hFSC

I

2

3

I

I
I SL3=FSA(SWA)+I, (SP, $AP: $RD2,5: SRD2,6:”$RD2,7),

11111
CODE AtiMITTEDA EXECUTES ‘FSD,AFSE,AFSF 4

11111
I (SP, $LD),

I 151I I

-204-

NOSES:

1. The master code, appropriately named “MASTER,” enters “@P
to read in and convert “FSA,” “FSB,” and “FSC.”

2. “FSA,“ “FSB,” and “FSC” are executed, the flow of control
being by means of conditional “L” branches and pathfinder
branches peculiar to the program.

3. Next, “@L3,” which contains the next loading address (NLA)
for code, is reset to the value it had before “FSA” was
loaded, and the three formula sets “FSD,” “FSE,” and “FSF”
are read in and converted, covering the previous three for-
mula sets.

4. The second section of the code is executed.

5. At the end of the program, a pathfinder branch to “@Jl” is
executed.

In addition to the master code, of course, there may be other

formula sets which are always in core, such as subroutines referred to

by both sections of the code. Also, this simple example can easily be

extended to the case where the code must be divided into more than two

sections. It is necessary merely to repeat a similar sequence of in-

structions to that on line 3 as many times as needed.

How to “ping-pong” a code. By “ping-ponging”a code it is meant

that several sections of the code must be repeatedly read in and out of

core since each must be executed more than once, unlike the previous

example. Thus the various sections of the code bounce in and out of

core like a ping-pong ball. To do this, after each section of the code

is converted and executed, it must be written on tape using “@P;” then

it need only be read in from tape for each succeeding execution. This

method saves considerable compi~ng time since on successive executions

-205-

the code need not be re-compiled. If we consider again a case in which

a code contains six formula sets} of which OfiY three Cm fit into core)

and assume each section is to be executed N times, the following diagram

illustrates how the master code should look.

T==
ENTER

0-DTApE FLAG E=
READ IN FSD,FSE,FsF
FROM TAPE($TP)

EXECUTE FSD,FSE,FSF El
TAPE FLAG=O? ‘0

I+TAPE FLAG

WRITE FSD, FSE,

I FSA,FSB,FSC($AP) WRITE FSA,FSB,FSC

I’&

X1+1-XI
ON TAPE ($TP)

I
EXECUTE FSA,FSB,FSC

We note that a “tape flag” is necessary, so that the master code can de-

tect whether or not the two sections of the code have been written on

tape.

-206-

IVY DATE
73174173176177[7t317918C

PAGE NAME PROBLEM I I I I I I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I I I i I 1 I
12 72 CODE
1

II MASTER,TF=O, Xl(l, N), (Ll)TF=Nj!,
I

($P, $AP: SR02,2:$RD2,3:$ RD2,4), (L2),
,

LI ,($P, STP: SRW3: $RD3, T($WA)+ 1: FSA ($WP):
1

ISRD3, T(swA)+2: FsB(swP): $RD3. T(swA)+3:Fsc($wP)), ~1
.- —

1LZ ,.. .
I II

c OMITTED ACODE A EXECUTE5 A FsA,A FSB,A FSC I
1:

I (L3)TF=NZ, ($P, $Tp: $Rw3:SWR3, T($WA)+I: FSA(SWPJ

$WR3, T($WA)+2: FSB ($WP): $WR3, T($WA) +3 : FSC($WP)),

sL3 = FsA($wA)+I, ($p, $Ap:$RD2,5:SR02,6: $RD2,7),

I

I

I
(L4), L3, (sp, $TP: SR03, T(sWA)+4: FsO(SwP):

I $RD3, T(swA)+5: FSE (SWP): $RD3, T($WA)+6: FSF(SWP)), Ill
L4, ... <J

c OMITTED ACGiOE A EXECUTES ‘FSO,AFSE, AFSF, I
L

I (L5)TF=NZ, TF=I ,(sP, sTP, swR3. T(swA)+4:

FSD(SWP): $WR3, T(SwA)+5: FSE($WP): SwR3.T($WA)+6:

FSF(SWP)),
J ●xit

L5,(xI) , (SP, SLD),
.-— —s

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I

I

I

I

Figuro Al

I

I

I

I

I

I—

I

I

I

I

I
I—

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I—

-207-

The code for doing this is illustrated in Figure Al. Again it is

assumed that tape 2 contains the six formula sets in unconverted form in

files 2-7, and that tape 3 is a blank to be used in the “ping-ponging”

operation. “T” is a block containing the ID words required by the tape

program. By observing the arrows on the outside of the coding sheet,

one can follow the path of flow as it corresponds to the above diagrsm.

The methods illustrated in this appendix thus far can be general-

ized, extended, or combined to h&dle virtually any lengthy code that can

be devised. Similar methods can also be used to write blocks of con-

verted code on the disk unit of machines which contain such a device.

The speed of a disk unit is always greater than the speed of tapes, so

this procedure is recommended when possible. The programmer should note

that formula sets are the only units of code which can be written on

tape or disk since only formula set names are contained in the symbol

table. Neither individual formulas nor groups of formula sets under

the control of only two calling sequence words can be written: the for-

mer, because formula names are not contained in the symbol table; and

the latter, because two calling sequence word entries are necessary for

each formula set read or written. Whereas one can write several for-

mula sets onto the assembly tape under cotitrolof an “A” card, this is

not possible using “#TP” or *’@DK.”

other manipulations of the symbol table are also possible using

various techniques involving the “#WC” and “@A” modifiers, in addition

to the special locations “#Ll,“ “@L&?,”“$L3,’’and “@+” (see Chapter4,

page 85). In general, however, manipulations which change the contents

of the symbol table are to be avoided if at all possible since they

might cause unpredictable difficulties in IVY. Therefore no examples

of this type of programming are given.

-20g-

APPENDIX 2

THE 7090 lXINGHANDINSTRUCTION SEX’

The 7090 longhand instruction set is divided into classes accord-

ing to the types of addresses and decrements (if any) allowed. The reader

is referred to the IBM Reference Manual, 7090 Data Processing System, for

descriptions of the operations and coding examples. First in this appen-

dix we shall discuss general addressing conventions, address modifiers,

and other conventions allowed in longhand coding, then the list of allowed

instructions by classes, and finally a coding example will be given.

Addressing conventions. In the description of each class of oper-

ations, the symbol “AD” is used to represent the allowed address symbols

for the particular class. Each class may use a subset of the following

set of address symbols:

W!!2@L! MEANING

The symbolic name of a data, remark, or
calling sequence block. This may
be the name of a numbered block.

NAMEn The nth element of data block “NAME.”

$Cs The calling sequence block.

-210-

An

#Ln

#z

Ln

F

FS

&SR

*

x

N

In each class of

theses following

bol is allowed a

MEANING

The nth element of the calling sequence
block.

Any of the subroutine data blocks.

The nth element of any of the subrou-
tine data blocks.

Address of instruction with “An”
modifier.

One of the elements of the “@L” block.

Zero or nulJ address.

Name of an “L” entry.

Formula name.

Formula set name.

Neme of an IVY subroutine.

location of current instruction.

Fixed or floating point literal
(Decimal only).

Absolute address equal to the num-
ber N.

operations, address modifiers(which occur within paren-

the address symbol) are represented by “Mi,” and each sym-

subset of the following set of modifiers:

‘i MEANING—

M. No modifier

Ml P (parameter algebra)

-211-

~
MEANING

‘2
Xn + P (parameter algebra plus index

register)

‘3
Xn (index register)

‘4
An (stored address)

‘5
Xn + A (index register plus stored

ad&ess)

M6 @lP (control word position)

%’
@C/@A (control word count or address)

Longhand instructions are separated from one another by colons.

The translation to machine language is strictly one-to-one, i.e., each

entry between colons corresponds to one machine word, except’for certain

entries which represent instructions to the compilerjwhich will be noted

as they occur. The elements of an instruction are separated from one

another by commas and sets of closed parentheses. The general format of

a longhand instruction is:

Conventions are

General

:@p(I/Xn),AD(Mi),ECR/CT:

explained in the discussion of each class.

form of a longhand code. Longhand instructions are en-

tered on “L” cards, which maybe intermixed with discretion in any desired

manner with “I” cards, to supplement the algebraic code in as great or

small a manner as desired. However, in this appendix we shall consider

longhand formula sets, i.e., complete routines or subroutines coded in

-212-

longhand. The programmer interested only in inserting a card or two of

longhand code into his program should have no difficulty once the larger

concepts have been studied. See restriction 2, page 217.

Ion@and codes are divided into formula sets, formulas, and

local entries just as are algebraic codes. The same rules for referent.

ing discussed in Chapter 5 also apply to longhand codes. However, the
.

methods of forming entry points and branches of course differ between

the two systems. Formula set names, formula names, and L-entries pre-

cede the operation at the entry point in parentheses, thus:

(FS) @P, AD(Mi)

(F) @P, A.D(Mi)

(Ln) @P,AD(Mi)

In branches to these entries, the name of the entry occurs in the address

of the instruction outside parentheses, modified if necessary, e.g.,

TRA,FS(Mi)

TRA,F (Mi)

TRA,Ln(Mi)

and so on for other types of transfer instructions.

Subroutine conventions. Internal IVY subroutines or subroutines

coded in the algebraic language must be entered by the instruction

TSX(~P), NAME

where “#P” is the pathfinder register and “NAME” is the name of the

-213-

subroutine. On the 7090 the pathfinder register “#P” is synonymous with

index register 3, X3. Thus the following entry is equivalent to the

above:

TSX(X3), NAME

If a subroutine written in longhand is enteredby a pathfinder

branch from a portion of the code in algebraic language, or by means of

one of the above instructions, one can use the first instruction of the

subroutine to store the pathfinder contents in the address or decrement

of a specified location “AD” as follows:

(NAME) SXA(@P),AD or (NAME) SXD(@P),AD

which, of course,t are equivalent to the entries

(NAME) SXA(X3),AD or (NAME) SXD(X3),AD

Calling sequences. Calling sequences may be constructed after a

“TSX” to any subroutine by using the pseudo-operation “CSW” and by fol-

lowing it with a standard IVY calling sequence word entry, separating

the calling sequence words from each other by colons. For example:

LITSX(@P),NAME:CSW,@BC,GE($WP):CSW,#CT2,CRA(#WC):CSW,3+7wE: ...

The IVY subroutines with variable length calling sequences (namely @P,

@P,j#@D,@R, ~PH,@P,#DK, and #CM) require an “HTR” with null address

field following the last calling sequence word. This is to signal the

subroutine tlnatthe calling sequence has ended. The compiler automati-

cally inserts this zero word in calling sequences to these routines

-214-

written in the algebraic code, but this is not done automatically in the

longhand system because, as mentioned previously, longhand code is trans-

lated in a one-to-one fashion. Thus, for instance, to print a vector,

the following statements should be used:

LITSX(#P),j?k%:CSW,$F,F@MAT(j$WP) :CSW,VECT@R(@P) :HTR:...

Definition of “#D” blocks. To define “~D” blocks at the beginning

of a formula set coded in longhand, one must enter these definitions be-

tween a single set of colons immediately following the first instruction

of the formula set, for example:

L (FS)SXD(j4P),AD:#D(4),@C(3) = 2.156,3.172,5.171,

$DH(5,9,10),$DM(50) = 5.1’j2,(S)47,5.213,5.215:...

The format for defining “j!D”blocks is otherwise the ssme as the format

for defining them on 1’1”cards, discussed in Chapter 5, pages 110-112.

Since “#D” definitions represent instructions to the compiler, a word

of code is not, in this case, assembled to correspond to the definitions

between the pair of colons.

Renaming. One may rename an index register with an alphabetic sym-

bol in the same manner as on “I” cards, by entering between colons as

follows:

:*SYMB#L = Xn:

Again, since this entry represents an instruction to the compiler, no in-

formation is assembled.

Storing addresses; The “An” symbols may be used in the address

-21‘j-

fields of “store address” instructions, and the address being stored will

be placed ininstructions having addresses modified by this same “An” sym-

bol. In longhand coding, instead of the entry “Anom” specifying m

store address instructions, one must instead mite dom consecutively

all m instructions. The number of store address instructions entered

must equal the number of instructions in which the address is stored.

For example:

L CLA,FRN($W):ADD,FRNX(X1):mA,AI:mA,Al :STA,Al:.e.

...LDQ.FRN(X2+A1):FMP,FTUJ(X3+A1):....ST$.~N(X2+AI):...

Here three “STA” instructions with address “Al” are present, and three

instructions with addresses modified by “Al” are also present. Note

that instructions in which addresses are stored must occur sequentially

after the “STA” instructions referring to them. The “STA” instructions

must occur sequentially together, as in the above example.

In longhand coding, one can also store ad~esses in instructions

at or near localy formulay or fo~la set entriesj or ne~ the “~A” it-

self, by using the name of the entry or “*” with appropriate modifiers.

“An” is not needed in such a case. For example:

L (Ll)c~,~N(xl):m,~N(x2):ST@,~(X3) :...

...cLA.FRN(#W):ADD,~@xl):WA,Ll:wA,Ll(l):WA,L1(2): ..0

This technique can thus be used to store addresses in a

tion,

items

backward direc-

if desired.

Storing decrements, prefixes, tags, and left half of MQ. If these

are stored in code, then “An” symbols, which are reserved for “STA”

-216-

,

alone, cannot be used. Instead the addresses of ‘rSTD,” “STP,” “SIT,”

and “SLQ” instructions must contain the name of a local, formula, or

formula set entry, or the “*,” with appropriate modifiers, in the same

manner as “STA” instructions which do not use “An” symbols.

Further restrictions on longhand coding. The following check list

summarizes the remaining restrictions on longhand coding:

1. To repeat what was said previously, only three index registers,
Xl, X2, and X3,are allowed in 7090 longhand coding.

2. The programmer should note that X3 is used by the algebraic
code not only to simulate the pathfinder, but also to simulate
index registers X4, X5, etc. If the longhand code consists
only of a few cards inserted in the middle of an algebraic
code, the programmer must save the contents of X3 or of the
last index register above X3 to which he has referred, to en-
sure that its previous contents, if needed after the longhand
segment, are not destroyed. This can be done in two ways:

a. In the algebraic code:

II....)Tl =Xn,

L1....(Ionghand code)...

IIXn=Tl,...

where “X “ is the last index register above X3 referred
to in th~ algebraic code and “T1” is some suitab~
chosen temporary location; or

b. In the longhand code:

1]....(Algebraic code)

LlSXA(X3),Tl:...(Ionghmd code)...

LI.....LXA(X3).T1....

II....(Algebraic code)

The previous contents of X3, simulating
register, are preserved by the longhand

-217-

some higher index
code.

3*

4.

class 10

In general, short longhand code inserts in algebraic code should
be used with great discretion. Because of the sm~tion of
extra index registers by X3, one must, as remarked above, take
great care not to destroy the contents of this index register.
Branching between such “pockets” of longh~d code ~d the alge-
braic co~e should also be avoided. The unwary coder should in
general follow these rules:

a. Short longhand inserts in a predominantly algebraic code
should not use X3 and should not be entered or left by
branches to algebraic code, without the use of great care.

b. Preferably, the smallest unit of longhand code in an alge-
braic code should be at least a formula.

Only one index register can be specified in an instruction, i.e.,
the “oring” feature of the 7090 is not permitted. This is be-
cause of the possibility of wiring the 7090, at some future date,
to contain seven index registers in which case this feature
would no longer be present.

h IVY 7090 longhand instruction, together tith its addressj
modifiers, etc., must be complete on one card- For all practi-
cal purposes, the end of the card is treated as a colon. Thus,
the last instruction on a card need not be followed by a colon.

Arithmetic operations

General format: ~p(I)j~(Mi)

The “I” is entered if indirect addressing is desired.

AD(Mi) = * Nwn(MoM1M#5),@s(MoM1M2M3) $N@MoM,M&4M5M6) ~

@Sn(MoM1M#3),#D(MoM1M#3),#Dn(MoM1 M#5), #Ln(Mo),

$z(MoM1M#y4M5), Ln(MoM1M2My5), F(MoM1M2Mj45),

FS(M0”lM#fl#6)~*(M0MlM&3)> ‘~N(M3)e

*
This notation means that any one of the modifiers shown is permitted.

-218-

MNEMONIC

ACL
ADD
ADM
ANA
ANs
CAL
CAs
CIA
CIS
DVH
DVP

FAD
FAM
FDH
FDP

FSB
FSM
11S
IAs

ICHA
LC.HB
LOI
IJIQ

NZT
pm
@T
$&&

@I
Pm
RCHA
RCHB
RIS
SBM
SCHA

OPERATIONS IN

MEANING

CIASS1

“x”IF LITERAL JuDwED

Add and carry logically
Add (fixed)
Add magnitude (fixed)
“And” to accumulator (Boolean)
“And” to storage (Boolean)
Clear and add logically
Compare accumulator to storage
Clear and add
Clear and subtract
Divide or halt (fixed)
Divide and proceed (fixed)
Exclusive “or” to accumulator

(Boolean)
Floating add
Floating add magnitude
Floating divide or halt
Floating divide and proceed
Floating multiply
Floating subtract
Floating subtract magnitude
Invert indicators from storage
Ingical compare accumulator and

storage
Ioad channel A
Load channel B
Ioad indicators
had MQ
Multiply and round (fixed)
Multiply (fixed)
Minus zero (prefix only)
Storage not-zero test
Off test for indicators
On test for indicators
“Or” to accumulator (Boolean)
“Or” to storage (Boolean)
“Or” storage to indicators
Plus zero (prefix only)
Reset and load channel A
Reset and load channel B
Reset indicators from storage
Subtract magnitude (fixed)
Store channel A

x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x

x
x
x
x
x

x
x
x

x
x

x
x
x

-219.

MNEMONIC

SCHA
SCHB
SIQ
SIN
STD
S21
S’EL
S@
Sl?P

STZ
SUB
UAM
UFA

U-I’S
USM

Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store

MEANING “x”IF LITERAL ALIQWED

channel A
channel B
left half of MQ
logical word
decrement
indicators
location counter

prefix
Mq
location and trap
tag
zero

Subtract (fixed) x
Unnormalized add magnitude x
Unnormalized floating add x
Umormalized floating multiply x
Unnormalized floating subtract x
Unnormalized subtract magnitude x
Zero storage test

EXAMPLES:

MEANING

~,+e(4) Store tag in fourth instruction following
m.dcsl Test contents of “SCSI” for zero
CIA;:3.25613+2 Mad indicated literal into accumulator
LDQ,4(X3) Load C(4 - C[X3])into MQ

Class 2. Shift and sense operations

General format: 4p,AD(Mi)

where AD(Mi) = $Z(MoM1M##4~)JN(MoM3)

-220-

MNEMONIC

ARs
IGL
IGR

Ills
MSE
PSE
RQL
SPR
Sl?r
SPU

EXAMPLE

AIS,20

OPERATIONS IN CIASS 2

MEANING

Accumulator left shift
Accumulator right shift
IOng logical left shif%
Iong logical right shift
Iong left shift
Iong right shift
Minus sense
Plus sense
Rotate MQ left
Sense printer, channel A
Sense printer test, channel A
Sense punch, channel A

EXAMPLES:

MEANING

Shift accumulator left 20
AIS;(2O) Same as above. Note alternative form

I IGL;jO(X2)
IGL,(X2+50)
IGL,#Z(X2+30)
PSE,96
MSE,1OO

Logical left ~, modified byC(X2)
Same as above
Same as above
Turn off all sense lights
Test sense light 4

Class 3. Load and Store Index Operations

General format: @PAD

where: “xn” represents the operand index reigster

AD(Mi) = NAME(MoM1M4M6),NAMEn(M&1M4),@(MoM1),

Fc@&,)@(M#l)#Dn(MoM1)&(Mo) ,

@(MoM1M4) ,Ln(MoM1M4),F(Mo~M4) ,FS(MoM1MhM6);[MOMJ .

-221-

MNEMONIC

OPERATIONSIN CLASS3

MEANING

MC

PAC
PAX

PDx

SXA
SXD

EXAMPLE

Load complement of address in index
Ioad complement of decrement in index
Ioad index from address
Ioad index from decrement
Place complement of address in index
Place address in index
Place complement of decrement in index
Place decrement in index
Place index in address
Place index in decrement
Store index in address
Store index in decrement

ExAMPms:

MEANING

LxD(xl), NAME(@P) Count of control word to Xl
IAC(X2),NAME($WP) Complement of control word address

to x2
PXD Clear accumulator
PAX(X3) Address of accumulator to X3

Class 4. Tape Manipulation Operations

General format: ~p, @Mi)

where: AD(Mi) = N(MOM3),@(M2M#4M5) .

OPERATIONS IN CIASS 4

MNEMONIC

BSFA
BSFB
BSRA
BSRB
REWA/B
RTBA/B

MEANING

Backspace file, channel A
Backspace file, channel B
Backspace record, channel A
Backspace record, channel B
Rewind, channel A or B
Read tape binary, channel A or B

-222-

MNEMONIC MEANING

RTDA/B
RUNA/B
SDHA/B
SDLA/B
WEFA/B
WTBA/B
WTDA/B

EXAMPIE

SIILB,3
WEFAj#Z(An)

Read tape decimal, channel A or B
Rewind and unload, channel A or B
Set density high, chsnnel A or B
Set density low, channel A or B
Write end-of-file, channel A or B
Write tape binary, channel A or B
Write tape decimal, channel A or B

EXAMPLES:

MEANING

Set tape B3 for low density
Write end-of-file on tape, address

stored

Class5. Special Sense Operations

General format: @P,$z(x)
n

OPERATIONS

MNEMONIC

CHS
cm
C@M
DCT
EFTM,
ESTM

LBT

RCT

SSM
SSP

IN CLASS5

MEANING

Change sign
Clear magnitude
Complement magnitude
Ditide check test
Enter floating trap mode
Enter select trap mode
Enter trapping mode
Floating round
lbw-order bit test
Leave floating trap mode
Leave trapping mode
P-bit test
Restore channel traps
Round
Set sign minus
Set sign plus

Warning note: Care should be used in entering any of the trapping

modes, since IVY occupies lower core; and attempts to set up trapping
routines there may destroy parts of IVY.

-223-

class6. Convert Operations

General format: @p,J@ Mi),N

where AD(Mi) = NAME(MOM1M#~4~ YNMn(MOMlM#f14M5),

#z(M,M&4M5) @/@sn@#,M2MJ ,

$D/~Dn(MOMIM&) .

N.f&!2: These operations are
represents a special

MNEMONIC

CAQ
CRQ

not indexable. Xn can be only O or Xl, and
operation. See 7090 manual.

OPERATIONS IN CLASS 6

Convert by
Convert by
Convert by

MEANING

addition from MQ
replacement from MQ
replacement from AC

This class consists of the single operation ENB, Enable from Y.

The format is

ENB(I),AD(Mi)

where “(I)” is entered if indirect addressing is desired. The allowed
“AD(M)“ are the same as for class 1 e~cept that modifiers M6 and ~

&are n t allowed, and the form “N(MOM5) is not allowed.

chsS 8. Transfer and execute operations

General format: @(I), f@Mi)

where “(I)” is entered if indirect addressing is desired;

AD(Mi) = @040M1&j44M5),Ln@oM1M&f4M5),

v@MoM1M&4M5))*(MoJf1M#y4M5)●

-224-

MNEMONIC

HTR
TCH
TCNA/B
TC@l/B
TEFA/B
TIF
TIj!J
TLQ

F@
TNZ
T@
TPL
T@
TQP

TRCA/B

TZE
XEc

EXAMPLE

TNZ,*(3)

TCfiA,*

TPL,(X3+3)

OPERATIONS IN CLASS 8

MEANING

Halt and transfer
Transfer in
Transfer on
Transfer on
Transfer on
Transfer if
Transfer if
Transfer on
Transfer on
Transfer on
Transfer on
Transfer on
Transfer on
Transfer on
Transfer on
Transfer
Transfer on

channel
channel A/B not in operation
channel A/B in operation
end-of-file, channel A/B
indicators off
indicators on
MQ less
minus
no overflow
non-zero
overflow
plus
MQ overflow
MQ @lS

redundancy check, channel A/B
Trap transfer
Transfer on zero
Execute

ExAM,PLES:

MEANING

If accumulator is not zero, transfer to
third instruction following

If channel A in operation, transfer to
this location

Return to third word of calling sequence
if accumulator is plus

Transfer to fifth instruction following
“JJ?”entry

-225-

Class9. Indicator operations

General format: @P,AD(Mi)

where AD(Mi) = @Z(MON$M4),N. (18 bit address)

OPERATIONS IN CLASS 9

MNEMONIC MEANING

IIL
IIR

RIL
RIR
RNT
STL
SIR

Invert indicators, left half
Invert indicators, right half
Left half indicators, off test
L@% half indicators, on test
Right half indicators, off test
Reset indicators, left half
Reset indicators, right half
Right half indicators, on test
Set indicators, left half
Set indicators, right half

EXAMPLES:

Assume GE = B(777777),TH = B(110623)

EXAMPIE MEANING

RNT,(GE) Skip next instruction if all right
indicators are on

SIL,(TH) Set left indicators to 110623
SIR,125713 9Set right indicators to 12571 10

or 3654218

Class 10. Class 10 consists of the single operation “STA”. This in-

struction has the same format as those in class 1, except that the

address “A (M)“ is also allowed.
nO

Class 11. Index testing and incrementing transfers

General format: OP(Xn)j@Mi),D

n“ is the index register operand;where “X

-226-

AD(Mi) = Ln(MoM1M4)jF/@MoM1M4),*(MoM1Mk) .On “TSX,” also &SR

D= immediate decrement = NAME(M&1M7), NAMEn(M&l)j

JZ(MOM1),NO Decrement notalloved on’’TSX”.

OPERATIONS IN CIASS 11

MNEMONIC MEANING

TIX Transfer on index
TNX Transfer on no index
TXH Transfer on index high
TXI Transfer with index incremented
TXL Transfer on index low
TSX Transfer and set

EXAMPLES:

EXAMPIE MEANING

index

TSX($P),j?!IJl Pathfinder branch to “$LD”
TXI(X1),*(l),l Increment Xl by 1 and go to next

instruction
TXL(X2),L1, If index X2 is less than or equal
NAME(#WC) to the count of “NAME,” go

to “L1” entry

class 12. Variable length operations

General format: @p,@Mi),N

where AD(Mi) =

MNEMONIC

VDH
VDP
VIM

N~n(M&$M#3)Jm (MoM1M#J4M5)~

#CS/#CSn(IVIJflM#f3),@/@n(MoM1M#3),

m&1qy4M5) AN(M3)

OPERATIONS IN CIASS 12

MEANING

Variable length
Variable length
Variable length

-227-

divide or halt
divide and proceed
multiply

class 13. Miscellaneous operations using no address

General format: @P,AD(Mi)

AD(Mi) are the same forms as allowed in class 1, but since
addresses are not used in these instructions, no
error checking is performed.

OPERATIONS IN CLASS 13

MNEMONIC MEANING

Halt and proceed
Invert indicators from accumulator

N@P No operation
@I “Or” accumulator and indicators
PAI Place accumulator in indicators
PIA Place indicators in accumulator
RIA Reset indicators from accumulator

class 14. Input-output channel commands

General format: @p(I),AD(Mi),CT

A@i) = same as class 1, except X = null or X2
(for transmit or no transilit)

CT = same as decrement of class 11

OPERATIONS IN CLASS 14

MNEMONIC MEANING

IjikD Input-output under count control and disconnect
I@P Input-output under count control and proceed
I@RP Input-output of a record and proceed
I#CT Input-output under count control and transfer
I@RT Input-output of a record and transfer
I#SP Input-output until signal and proceed
I@T Input-output until signal and transfer

Coding example:

Llm,3:RcHA,Ll :TC@A,*:..o:(Ll)I@CT,NAME,NAME(~WC)

-228-

The block “NAME” is written on tape 3.

Class 150 Miscellaneous sense and input-output operations

General format: @p,(Xn)

OPERATIONS IN CLASS 15

MNEMONIC

BTTA/B
ENK
EJ?TA/B
I@
RCD
RDCA/B
RPR
SLF
SLNY
SLTY
SwTz
WPB
WPD
WPU

MEANING

Beginning of tape test, channel A/B
Enter keys
End of tape test, channel A/B
Input-output check test
Read card reader, channel A
Reset data channelA/B
Read printer, channel A
Turn sense lights off
Turn on sense light Y(Y=I,2,3, or 4)
Test sense light Y(Y=I,2,3, or 4)
Test sense switch Z(Z=l,2,3,4,5, or 6)
Write printer binary, channel A
Write printer decimal, channel A
Write punch, channel A

Coding Example:

To restore paper in channel A printer, assuming Share 2 board:

LIWPD:SPR,l:TC@A,*:...

class16. Exchange operations

General format: j$P

OPERATIONS IN CLASS 16

MNEMONIC MEANING

XCA Exchange contents of accumulator and MQ
XCL Exchange logical contents of accumulator

and MQ

-229-

Class17. Immediate index loading operations

General format: Pp(Xn),@Mi)

where “xn” is the operand index register

AD(Mi) = immediate address = NAME(MOM1M6M7),

~n(M#&f$dMoJ$)>N

OPERATIONS IN CIASS 17

MNIMONIC MEANING

Address to Index True
Axc Address to Index Complemented

Coding example: To set a block to zero

LIAxc(xl),NAh@@C):wZ,w(Xl):TxI(x1),*(l),l:T@xl),*(-2),o:

s~~. The following table is a list of mnemonic operations

in alphabetical order, giving the class to which each operation belongs.

This table canbe used both to find which mnemonics are allowed as well

as to find to which class a given operation belongs.

-230-

m
l
n
N
o
l
o
J
c
n
c
d

mq
..lnbln.lnln

Inu-l
.

.
..-(n-

.r’oa)?o
-.

-.
u

-
2
3
1
-

valent,

Ianghand coding example.

on the 7090, to the “Mix

The following longhand

cross sections” code in

example

Chapter

is equi-

4, page

78. The example shouldbe self-explanatorywhen compared with the alge-

braic version.

I RUN 77Ic , .-

C MIX hCRGfSSASECTIONS

L (MX)SxA($P),L4:* I=xI: *stx2:*M=x3

AXC(M),I: (L5)CLA,MS(M): PAC(S) :~L(S). Ll.O

CLA,C(SWP): ADO, CXX(M):STA,AI: STA,AI:STA,AI

AXC(I), I: (L6)STZ,C(I+AI): TXI (1),*(1),-I:TXH(I),L6,-CXX2-I

(L2)CLA, MN(S):PAC(I):LDQ, MDV(S):FMP.EV: ADD. l.O:STO.Tl

TMI, L3

LDQ, MD(S): FMP,TI: SLW,TI: CLA, C($WP): ADD, CXX(I): STA , A2

AXC(I), 1: (L7)LDQ, Tl:FMP, C(I+A2): FAD, C(I+Al): ST@, C(I+Al): TXI(I).*(l),-l

TXH(I), L7, -CXX2-I

CLA, MD(S) :TMI, LI

TXI(S), L2,-I

(LI)TXI (M), *(I), -1: TxH(M), L5, -MM-l: CLA, IcT:TN=, L4

TSX(SP), SPR: CSW , SF, FM I(SWP): CSW, $A, C(SWP):CSW, HM: CSW, GM: HTR

(L4)AXT(X3), *: TRA1(X3+I)

(L3)TSX($P), SOP:CSW,EP2 ($WP)
I

Internal formats on the 7090. The formats of internal wcnxison

the 7090 are important if the programmer is to know how to handle them

using the longhand instruction set. These formats are as follows:

-232-

1. Floating point words:

[S1 E I F I T I
01 89 35

where S = the sign bit; E = exponent + 200B;
F = normalized fraction; T = tag, if any.

2a. Fixed point words:

Is 100000000] N I
01 89 35

where S = the sign bit; the next eight bits are always
zero; and N is the fixed point number of 27 bits or
less, right adjusted so that the low order bit occupies
position 35.

b. Fixed point double-stored words, tag length P:

p[ooooooool Q I T I
01 89 35- P 35

where S = the sign of “Q”; Q = the “Q” portion of 27-P
bits or less, ri@t adjusted so that the low order bit
occupies position 35-P; and T = the “T” portion, of P
bits or less, right adjusted so that the low order bit
occupies position 35.

3. Calling sequence words:

I $xXx I $WA I
o 1718 35

where “$XXX” is the BCD representation of the characters
“xxx”, right adjusted so that the last character loaded
occupies bit positions 12-17; and “#WA” represents the
quantity, if any, in the “@WA” portion, right adjusted
so that the low order bit is in position 35.

4. Control words, in symbol table and calling sequences:

Slool $Wc I F I $WA I
0123 1718 X)21 35

-233-

where “S” is the sign bit, minus if “$WA” gives the
the address of a table of control words (e.g. for
numbered symbols) or of a particular control word
(renamed blocks); lt@c’~i. the count of the block;

“F” is the control word flag, having values as
follows:

F MEANING

o data block
1 longhand code block
2 algebraic code block

remark block
? index register symbol

5 not used
6 calling sequence block

7 not yet defined as to content

“@A” is the address of a control word or of a table Of
control words, or the base address of the named block
minus one.

-234-

APPENDIX 3

THE 7030 IONGHAND INSTRUCTION SET

Like the 7090 instruction set, the 7030 set is divided into

classes according to the types of addresses allowed. As a general rule

these classes follow the divisions of 7030 operations according to type,

as well. The reader is referred to the IBM Reference Manual, 7030 Data

Processing System, for descriptions of the operations and coding examples.

The organization of this appendix will follow that of Appendix 2 as

closely as possible.

Addressing conventions. In the description of each class of

operations, the symbols “AD,” “AE,” etc., are used to represent the al-

lowed address symbols for the particular class. Each class may use a sub-

set of the following set of

SYMBOL

NAME

NAMEn

$Cs

address symbols:

MEANING

The symbolic name of a data, remark, or
calling sequence block. This may
also be the name of a numbered block

The nth element of data block “NAME”

The calling sequence block.

-235-

SYMBOL

jlcsn The

@D Any

#Dn The

nth element
block

MEANING

of the calling sequence

of the subroutine data blocks

nth element of any
data blocks

An Store address syulbol

@Ln One of the elements of

of the subroutine

the “#L” block

$Z Zero or null address

Ln Name of an “L” entry

F Formula nzune

FS Formula set name

$s3 Name of an IVY subroutine

* Location of current instruction

x Fixed or floating point literal
(decimal only)

N Absolute address equal to the number N

P Absolute address equal to the value
of parameter algebra P

Xn Address of nth index register

#P Address of the pathfinder register

#sn Address of system symbol n

system symbols. On the 7030, the special registers such as the

accumulator, factor register, etc., are addressable, and the’’j%nt’symbols

provide the ability to address these registers in any instruction.

-236-

Table A3.1 lists the system symbols, their meaning, and the absolute ad-

dress which will be assembled when these symbols are specified. The

address is given in tne form “word address.bit address”. In instruc-

tions which have less than a 24-bit address field, some of these ad-

dresses must be truncated to the nearest half or full word address to

fit the instruction concerned.

TABLE A3.I

SYSTEM SYMBOLS USED IN 7030 LONGHAND

SYMBOL

$s0
#sl
7s2
$s3
$k4
$s5
$s6
$s7
$s8
$s9
@slo
$s11
$s12
$kil3
$s14
@sl5
$S16
$%’17
$%18
$s19

MEANING

location of zero
interval timer
time clock
interrupt address
upper boundary
lower boundary
boundary control bit
maintenance bits
channel address
other CPU
left zeros counter
all ones counter
left accumulator
right accumulator
sign byte register
indicator register
mask register
remainder register
factor register
transit register

AmmEss

0.0
1.0
1.28
2.0

;:;2
3.57
4.0
5.12
6.0
7.17
7.44
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0

In addition, the index registers can be directly addressed by using

the symbols “Xn” (XO,X1,...,X15) outside parentheses.

Address modifiers. In each class of operations, address modifiers

-237-

(which occur within parentheses following the address symbol) are repre-

sented by “Mi”, and each symbol is allowed a subset of the following set

of modifiers:

Mi MEANING
—

‘o
no modifier

‘1
P (parameter algebra)

‘2
Xn + P (parameter algebra

plus index register)

‘3
Xn (index register)

‘4
An (stored address)

‘5
Xn + An (index register

plus stored address)

M6 @@ (control word position

%’ @WC/@A (controlword count
or ad~ess)

If parameter algebra appears as a modifier (M1,M2), the result of the

parameter algebra modifies an address field appropriate to the instruc-

tion, e.g., 18 bits in floating point, 19 bits in branches} and 24 bits

in VFL. In the description of operations by classes, each description

contains notes on how parameter algebra modifiers are handled in the

particular class.

Operation modifiers. Certain classes of operations may be fol-

lowed by modifiers, which directly modify the operation itself. Opera-

tion modifiers “@i” follow the operation mnemonic enclosed in

-238-

modifiers are as follows:

MEANING

no modifier

N/U (normalized or unnormalized)

M (minus modifier)

MA (minus absolute modifier)

A (absolute modifier)

MD,F,B (MD = mode = B,BU,D, or DU; F and B =
parameter algebra)

I (immediate modifier)

V*I/VtIC/VtICR (progressive indexing
modifiers)

bbbb (four bit binary connective)

IND(indicator mnemonic — see Class 9 for
list).

I/B/BI (immediate, backwards, and back-
wards immediate modifiers)

Xn/P(index register or parsmeter algebra
‘-count for transmits]

Ion@and instructions are separated from one another by colons.

The translation to machine language is strictly one-to-one, i.e., each

entry between colons corresponds to exactly one machine

(which may be a full or half word). The elements of an

separated from one another by commas and sets of closed

The general format of a longhand instruction is:

-239-

instruction

instruction are

parentheses.

I

:@P(@)...(@@D(Mj),AE(Ml):
i

Conventions are explained in the discussion of each class.

General form of a longhand code. Ion@and instructions are entered

on “L” cards, which may be intermixed with discretion in any desired man-

ner with “I” cards in order to supplement the algebraic code in as great

or small.a manner as desired. However, in this appendix we shall consider

longhand formula sets, i.e., complete routines or subroutines

longhand. The programmer interested only in inserting a card

longhand code into his program should have no difficulty once

concepts have been studied.

Ionghand codes are divided into formula sets, formulas,

coded in

or two of

the larger

and local

entries just as are algebraic codes. The same rules for referencing dis-

cussed in Chapter 5 also apply to longhand codes. However, the methods

of forming entry points and branches of course differ between the two

systems. Formula set names,

operation at the entry point

formula names, and L-entries precede the

in parentheses, thus:

(FS)@P,AD(Mi)

(F)@K~(Mi)

(Ln)@P,AD(Mi)

In branches to these entries, the name of the entry occus in the ad~ess

of the instruction outside parentheses, mcdified if necessary, e.g.>

B,FS(Mi)

B,F(Mi)

-240-

and so on for ot~ types of branch instructions.

Subroutine conventions. Internal IVY subroutines or subroutines

coded in the algebraic language must be entered by the two instructions

LVI($P),*:B,NAME

where “~P” is the pathfinder register and “NAME” is the name of the sub-

routine. On the 7030, the pathfinder register “@P” is synonymous with

index register X15. Thus the following entry is equivalent to the above:

If a subroutine

branch from a portion

LVI(X15),*:B,NAME

written in longhand is entered by a pathfinder

of the code in algebraic language, or by means of

one of the above instructions, one can use the first instruction of the

subroutine to store the pathfinder contents in some specified location,

if desired, thus:

(NAME)SV(@P),AD(Mi) or (NAME)SV(x15),AD(Mi)

Calling sequences. Calling sequences may be constructed after a

pathfinder branch to any subroutine by the use of the pseudo-operation

“CSW,“ as in 7090 longhand; for example:

LILVI(@P),*:B,NAME:CSW,@BC,GE(@P) :CSWj$CT2,CRA(@WC):CSW,l+TH:...

The IVY subroutines with variable length calling sequences (namely @Pj

#TP,POD,@l%,@PH,@MP,#DK, and $CM) require a “CSW” with no fields follow-

ing it after the last calling sequence word containing some sort of

entry. The compiler automatically inserts this zero word in calling

-24I-

sequences to these routines written in the al-gebraic code, but this is

not done automatically in the longhand system because, as mentioned pre-

viously, longhand code is translated in a one-to-one fashion. Thus, for

instance, to print a vector, the following statements should be used:

LILVI(~P),~:B,@R:CSW,~F,F@MAT(@P) :CSW,VECT@R(~WP):CSW:...

Calling sequence words and pathfinder branches take up full words

on the 7030 when translated. Thus, as a general rule, one should enter

pathfinder branches in any alternative exits from a subroutine; this

must be done when the subroutine is coded in the algebraic language.

Longhand subroutines, of course, can be coded to take half word exits

into account, if desired.

Definition of “$D” blocks. Definitions of “@D” blocks in longhand

code must be entered between a single pair of colons immediately follow-

ing the first instruction of the formula set; for example:

L (FS)SV(SP,AD(Mi):@D(~),@C(3) = 2.156,3.172,5.171,

$DH(5,9,1O),ZDM(5O) = 5.152,(S)47,5.213,5.215:...

The format for defining “~D” blocks is otherwise the

for defining them on “I” cards, discussed in Chapter

Since “~D” definitions represent instructions to the

sane as the format

5, pages112-114.

compiler, a 7030

instruction is not, in this case, assembled to correspond

tion between colons.

Renaming. One may rensme an index register with an

to the informa-

alphabetic sym-

bol in the same manner as on “I” cards, by entering between colons as

-242-

follows:

:*S~@L = Xn:

Again, since this entry represents an instruction to the compiler, no in-

formation is assembled.

Storing addresses.

fields of “store value in

The “An” symbols may be used in the address

address” instructions, and the address being

stored will be placed in instructions having addresses modified by this

same “An” symbol. In longhand coding, instead of using “An.m” to specify

the number m of “store value in address” instructions, one must instead

write down all “m” instructions needed. For example:

L Lv(xo),FRN(@w):V+(XO),FRNX(XI):SVA(XO),A1:SVA(XO),AI:SVA(XO),AI

...LET(N).F@x2+A1):*+(N),FTtN(x2+Al):....ST(N).FRN(2+A1A1):...

However, it should be noted immediately that the above technique is not

recommended. The “SVA” instruction is very slow, and when several are

used in sequence as above, even slower. Instead, some temporary location

and a free index register should be used to simulate the “SVA”. This iS

what IVY actually does in the translation of such a code written in

Algebraic language. Thus the above is better written as follows:

L L(U),FRN(SW):+(U),IRNX(X1):ST(U),D1:...

..JlJ(X14),D1(l):LVS(X14),X2,X14:Ll?r(N),#Z(X14):*+(N),@Z(X13):.0.:

sT(N),s~(x14):...

where “D1” is some suitably chosen temporary location. Note that unnorma-

lized floating point is always used in address computation; all so-called

“fixed point” numbers are always stored and operated’upon as unnormalized

-243-

floating point, with an exponent of zero and the low order bit in bit

position 49. Also note that the effective address of instructions with

a stored address is computed by placing the sum of the computed address

and of the modifying index register into a spare index register, and

placing an address of zero (~Z) in the instructions with “stored” ad-

dresses. This technique should always be used; if possible, “SVA”

should never appear in a code.

Further restrictions on longhand coding.

1. Only fifteen index registers (XI,X2,...,XI5) are allowed as
modifiers in 7030 longhand coding. In addition, however,
index zero, XO, is allowed as an oprand in indexing opera-
tions or in the address field of other operations.

2. The programmer should note that X15 is used not only to
simulate the pathfinder register, but also to simuhte X13,
x14, X15, X16, etc., in the algebraic code. (Xl3 and Xl4
are used to simulate the store address in algebraic code,
and for other temporary purposes). Thus, if a longhand
code consists only of a few cards inserted in the middle
of the algebraic code, the programmer must save the con-
tents of X15, or the contents of the last index register
above X12 to which he has referred, to ensure that its
previous contents, if needed after the longhand segment,
are not destroyed. This can be done in two ways:

a. In the algebraic code:

II...)Tl = Xn

L!... (Longhand Code)...

IIXn=Tl,...

where “X “ is the last index register above
X12 refe?red to by the algebraic made~ and “T1” is
some suitably chosen temporary lo@atton; or

b. In the longhand code:

-244-

3.

4.

Ii...(Algebraic code)

LlSX(X15)jTl:.o.(tinghandcode)

LI....IX(Xl~).Tl:...

1“1...(Algebraic code)

the previous contents of X15,simulatingsomehigher
index register, are here preserved by the longhand code.

The coder should note that because of the difficulties involved
in simulating extra index registers in algebraic programs and
of properly handling “L” type branches between algebra and long-
hand, great care must be exercised if a short longhand insert is
placed in the midst of an algebraic code. The unwary programmer
should

a.

b.

therefore attempt to follow these rules: - - –

In a short longhand insert in algebraic code, index
registers X13 and above should not be used, and “L”
branches between algebra and longhand should be stu-
diously avoided.

Generally,.longhand inserts should be comprised at
least of formulas so that the above-mentioned di~i-
culties will not arise.

is being run on the 7030 under MCP, the progrsnmer is notIf IVY
allowed to use longhand instructions relating to input-output.

An IVY 7030 longhand instruction, together with its address,
modifiers, etc., must be complete on one card. For all practi-
cal purposes, the end of the card is treated as a colon. Thus,
the last instruction on a card need not be followed by a colon.

THE IVY 7030 LONGHAND INSTRUCTIONS

Class 1. Floating Point Operations

General format: @p(@l)(@Op~@3@~)*,~(”i)

@l, orthemode (Nor U)mustalways represent.

$2and 943are not allowed in some operations, noted below.

*
This notation means that any one of the modifiers shown may be present.

-245-

@l@ l@Dl?Dn(M~~1~f2M3M6),7Ln(~40),zz(Mo~41M2My4M5),
M) F(MOM1M2M3),FS(M& M2~4$f6)>LJM&41i2 ~ ,

X,N(M3)Jn(MoM1M2M5))* (MOM1My~4M5)j

$SJM0141M2M5).

Parameter algebra in parentheses modifies full word address
(18 bits).

In E k I, SHFL, and SHFR, i.e., the floating point immediate

operations, the forms of address allowed are

p(MOM3)~N(~M3)J> and $Z(MOM1M~y4M5)0

The addresses of these instructions are computed and inserted
as 11 bits plus sign. In these cases, “P” in parentheses mo-
difies the 11 bit field.

OPERATIONS IN CLASS 1

MNEMONIC MEANING ,,x!t-J-y$2,@5 -

+ Add
+MG Add to magnitude

Subtract
-MG Subtract from magnitude
* Multiply
*+ Multiply and add

Multiply and subtract

7- Divide
D+ Add double
D+MG Add double to magnitude
D- Subtract double
D-MG Subtract double from magnitude
DL Ioad double x
DLWF Ioad double with flag x

*
This notation means that any one of the modifiers shown maybe
present.

-246-

MNEMONIC

$
E+
E-I-I
E-
E-I
F+
F-
K
KMG
KR
KMGR
L

M+
M+MG
M-
M-MG
R/
SHF
SHFL

:y

SRD
ST

MEANING

EXAMPLE

+(N),5.96j2-06

~(N),6(x3)
E+(N),cNu(xI)
E-I(U),16
E-I(u),pz(16)
E-I(U),(16)

Multiply double x
Divide double x
Add to exponent
Add immediate to exponent
Subtract from exponent
Subtract immediate from exponent
Add to fraction
Subtract from fraction
Compare x
Compare magnitude x
Compare for range x
Compare magnitude for range X
Iaad x
Load factor register x
Load with flag x
Add to memory
Add magnitude to memory
Subtract from memory
Subtract magnitude from memory
Reciprocal divide x
Shift fraction x
Shift fraction left
Shift fraction right
Store low order x
Store root x
Store rounded x
Store x

EXAMPLES:

MEANING

Add indicated literal to contents of
accumulator

Load factor register with C(6+vF[x3])
Add EXP(CNT3+C[X1]) to exponent of accumulator
Subtract 16 from exponent of accumulator
Same as above. Note alternative form
Same as above. Note alternative form

-247-

class 2. Variable Field Length (vFL) Instructions

o~, the mode, field len@h, and bfiesize, must always represent

In to-memory operations,noted below, the 96 or ~e~ate modifier
is not allowed

Some operations noted below do not permit the 02 modifier

AD(Mi), the memory reference, has two interpretations) depending
on whether or not the @6(immediate) or @ (Pro~essive
indexing) modifier is specified. 7

1. Direct: AD(M.) = s~e as class 1. The P modifier in paren-

theses mod.ifi~sbit addresses (24 bits).

Immediate: AD(Mi) = Nl@MoM11”&yM6~)*,2.

In all cases where $
$1
is specified, the result of P in paren-

theses and of N outs de parentheses is shifted properly and
a sign byte is constructed, according to the mode, field
length, and byte size specified. Norma~y when @6 Or @ is
specified the “~Z” and “N” entries shouldbe used to ob~ain
immediate operands. The other entries supply addresses for
those unusual cases where addresses are to be operands.

AE(MJJ, the offset field, = P(MOJ43)only.

OPERATIONS IN CLASS 2

MNEMONIC MEANING f46-~ 02 AIMWED

+ Add x
+MG Add to magnitude x

Subtract x

*
This notation means that the modifiers which appear must be separated
by commas as indicated.

-21&

I

MNEMONIC

-MG
*
*+

7-
CV
DCV
K
KE
KF

KR
L

13Rcv

L!rRs
IMF
M+
M+l
M+MG
M-
M-1
M-MG

ST

EXAMPLE

MEANING #6 ALLOWED

Subtract from magnitude
Multiply
Multiply and add
Multiply and subtract
Divide
Convert
Convert double
Compare
Compare if equal
Compare field
Compare field if equal
Compare field for range
Compare for range
Load
Load converted
Load factor register
Load transmit register

converted
Imad transit and set
Ioad with flag
Add to memory
Add one to memory
Add magnitude to memory
Subtract from memory
Subtract one from memory

x
x
x
x
x

x
x
x
x
x
x
x
x
x

x
x
x

Subtract magnitude from-memory
Store rounded
Store

EXAMPLES:

+(J?U)6,1)(I),27,16(X1) Add 27 to contents
16 i-C(N).

L(B,17,2)(v+Ic),8(x2),FsT Load the number in

$2 ALLOVED

x

x
x
x
x
x
x
x
x
x
x
x
x

x
x
x

x
x

MEANING

of accumulator, offset

location VF(X2). add
8 to VF(X2),subtract 1 from CF~X2).
Offset = C(FST)

ST(BU,64),STR3 Store right accumulator in STR3

M-(B,16,1),@12(16),2 Subtract a field from the right accumu-
lator, offset 2, from field of same
length starting at bit 16 in left
accumulator.

-249-

Class 3. Connective Operations

General format: @p(#5)(@8)(@o@6@7),~(~~i),~(Mj)

This class is similar to class 2 (just considered) except for the
following:

1. The mode specified in 95 must be BU.

2. The connective modifier @Q must always be present. The minus
modifier ~ is never allowed.

2

3. No sign byte is ever constructed

OPERATIONS IN

MNEMONIC MEANING

c Connect
CM Connect to memory
CT Connect for test

for immediate addresses.

CLASS3

936~~

x

x

-EXAMPLES:

EXAMPLE MEANING

[

CM(BU,l,l) 1111),@15(63) Turn on noisy mode indicator
c(Bu,64,8)0111),ARF1,20 “Or” (inclusive) contents of ARl?l

and accumulator, offset 20
C(BU,24,1)(OOOO),0 Clear accumulator
CT(BU,FN+3,8)(O011),PLN(64+x3) Test indicated memory field

for zero

class 4. Direct Index Arithmetic
.

General format: oP(xn),AD(14i)

where Xn is the operand index register

~(Mi) = same as class 1. P in parentheses may, in these
operations, modify full word (18bit) or half word (19bit)
addresses, as indicated below.

-250-

MNEMONIC MEANING

KC Compare count
KV Compare value
Ic Load count
Ill Ioad refill

LV Iaad value
LWX Ioad value

effective
LX bad index

Rename index

OPERATIONS IN CLASS 4

P MODIFIES MNEMONIC

19 bits Sc
19 bits SR
19 bits Sv
19 bits SVA

19 bits Sx
19 bits v+

18 bits V+c

18 bits V-I-CR

MEANING P MODIFIES

Store count 19 bits
Storerefill 19 bits
Storevalue 19 bits
Storevaluein 19 bits
address
Storeindex 18 bits
Add to value 19 bits

Add to value, 19 bits
count

Add to value, 19 bits
count,and
refill

Q2ssL2” This class is composed
“Load value with sum”.

LVS(Xn)JijXj~ •O~)Xm

of the single operation “LVS,” or
The format of this operation is:

where Xn is the operand index register and the others are
the index registers the sum of whose value fields are
placed in the value field of Xn.

Class 6. ImmediateIndexArithmetic

Generalformat: @PAD

whereXn is the operandindexregister

AD(Mi)= NWMoM1~M&) }xn/$sn(MoM,)>#cs/@(MoM1Jqs

FS(M&$jM6~)>@(M$$M4)}*(MoM1M4)>N

The resultof “P” in parenthesesand “N”maybe placed
in an 18-bitor 19-bitfieldin the instruction,as
notedbelow. NormalJythe “@Z”and “N” entriesare
used;the otherentrieslistedabove supplyaddress
fields,in the rare caseswhen theseare wantedas
operands.

-251-

OPERATIONS IN CLASS 6

MNEMONIC MEANING

C+I Add immediate to count
c-I Subtract immediate from count
KCI Compare count immediate
KVI Compare value immediate

LENGTH OF P OR N

18 bits
18 bits
18 bits
19 bits

C~are valuenegativeimmediate 19 bits
LCI Ioad countimmediate 18 bits
IRI bad refiKlimmediate 18 bits
LVI Ioadvalue immediate 19 bits
LW bad valuenegativeimmediate 19 bits
V+I Add to valueimmediate 19 bits
V+IC Add to valueimmediate,count 19 bits
V+ICR Add to value immediate,count,refill 19 bits
V-I Subtractfromvalue immediate 19 bits
V-IC Subtractfromvalue immediate,count 19 bits
V-ICR Subtractfromvalue immediate,count, 19 bits

refilJ.

=“ Pseudo-operationsto aid in indexi~

Theseoperationsare used to constructindexwords,value

fields,etc.,which canbe loadedinto indexregistersusing someof the

indexinginstructionsdiscussedabove. Each has a distinctformat,and

these shouldbe studiedcarefuKly.

PSEUDO-O-ION

VF,AD(Mi)

CF,AD(Mi)

MEANING ADDRESSES ALLOWED

value field Same as Class 6. A signed,2&-bit
addressis assembledat the next
half-wordlocation. “P”and “N”
are 24-bitquantities.

countfield Same as Class6. An unsigned,18-bit
addressis assembledat the next
half-wordlocation. “P”and “N”
are 18-bit.quantities.

-252-

PSEUDO-OPERATION

RF,AD(Mi)

MEANING ADDRESSES ALLOWED

refill field Xn/$Sn(MoM,).*(ltoM,),

Ln(MoM1) F/FS(MoM1),$’CS/$CS,(MoM,)

~D/$Dn(MoM1),NAME/NAMEn(MoM1).

An unsigned, 18-bit address is
ass.]medas the neat half-word
location. “P” is an 18 bit
quantity.

XW AD(Mi).AE(Mi), index word First field: same as “VF.”

AJ@J,p
Second field: same as “CF.”
Third field: same as “RF.”
Fourth field: parameter algebra

for flag bits, < 7.
A 64-biti~dex

at the next

EXAMPLESOF INDEXARITHMETIC,ETC.

wor~ is assembled
full-word location.

EXAMPLE

V+I(X1),8

C+I(X2),8

v+(x3),L1:....(L1)vF8-8

XW,PRF(@A),PRF(#WC),*

Value field of Xl
8 half-words

Count field of X2

Value field of X3

Indexword:value

MEANING

is incremented by

is incremented by 8

is decreased by 8 bits

fieldcontainsaddress
of PRF, count field contains count, re-
fill field contains address of current
instruction

class 8. Unconditional Branching, Execute, and Refill

General format:

AD(Mi) =

@P.AD(Mi)

?Z(M1M344J5)>Ln/F/Fs/*(Mo~,M2~f14M5) t

$kR(in branches only, if preceded by “LVI(~P),*”)

“P” in parentheses modifies half word addresses
(19 bits) except as noted.

-233-

MNEMONIC MEANING

B
BD
BE
BEW
BR
CN$P

EX
EXIC
N#P
R
RCZ

EXAMPLE

B,*(5)
BR,(5)

Branch
Branch
Branch
Branch
Branch

disabled
enabled
enabled and wait
relative

Conditional no operation (inserted only
if location counter is not set at
full word)

Execute
Execute indirect and count
No operation
Refill (P modifies 18 bits)
Refill on count zero (P reedifies18 bits)

EXAMPLES:

MEANING

Branch to fifth half word following
Branch to fifth half word following

Class 9. Indicator Branching

General format: @p(@9), @Mi)

@9isone of theindicator mnemonics listed below, or its
decimal numerical equivalent.

-254-

MNEMONIC

AD
AE
AH
AL
BTR
CBJ
CPUS
Cs
DF
DS

EE
EK
EKJ
E#P
EPGK
EXE
IF
IJ
IK
IR
LC
Is
MK
M@P

;

PGO-K6
PSH

TABLE A3.2

INDICATORMNEMONICSAND DECIMALEQUIVALENTS

RGZ
RLZ
RN
RU
RZ
TF
TS
UF
UK

DECIMAL

%
62
60
39
8
5
13
20

z
11

2
12
9
18
21
2
1

25
22
26

5;
63
15
23
41-47
27

58
56
59
34
57
35
4

36
10

MEANING

Address invalid
Accumulator equal
Accumulator high
Accumulator low
Binary transit
Channel busy reject
CPUsignal
Channel signal
Data fetch
Data store
Decimal transit
End exception
Exchange control check
Exchange check reject
End of operation
Exchange program check
Execute exception
Instruction fetch
Instruction reject
Instruction check
Imaginary root
Lost carry
IOst significance
Machine check
To-memory operation
Noisy mode
Operation code invalid
Partial field
I&ogram indicators o-6
Preparationshift
greaterthan 48

Resultgreatertnan zero
Resultlessthan zero
Resultnegative
Remainderunderflow
Resultzero
T flag
Time signal
U flag
Unit check

-255-

—

TABLEA3.2 (continued)

MNEMONIC

UNRJ
USA
VF
Xcz
XE
XF
XH
XL
XPFP
XPH
XPL

@

XVGZ
XULZ
Xvz
ZD
ZM

DECIMAL

7
17
37
48
53
m
54
52
28
30
31
29
32
51
49
50
24
33

MEANING

Unit not ready reject
Unended sequence of addresses
v flag
Index count zero
Index equal
Exponent flag
Index high
Index low
Exponent flag positive
Exponent high
Exponent low
Exponent overflow
Exponent underflow
Index value greater than zero
Index value less than zero
Index value zero
Zero divisor
Zero multiply

For Class 9, AD(Mi) = same as Class 8, exceptonly Xl can

participate in modification.

MNEMONIC

BI
BIZ
BZI
BZIZ

OPERATIONS IN CLASS 9

MEANING

Branch on indicator
Branch on indicator and set to zero
Branch on zero indicator
Branch on zero indicator and set to zero

EXAMPLE:

BI(NM),L3 (or BI(63),L3): Go to L3 if “NM” indicator is on

-256-

Class 10. Bit Branching

General format: @P,AD(Mi),AE(M~)

AD(Mi) = same as Class 2 (direct)

AE(M4) = same as Class 9
d

MNEMONIC

BB
BB1
BBN
BBZ
BZB
BZBI
BZBN
BZBZ

BB1,$!s15(63),*(2):
to

Class 11. Index Branchinq

OPERATIONS IN CLASS 10

Branch on
Branch on
Branch on

Branch on

Branch on
Branch on
Branch on
Branch on

turn
next

EXAMPLE:

General format: @P(Xn), AD(Mi)

where Xn is the operand

on noisy mode
instruction

MEANING

bit
bit and set to one
bit and negate
bit and set to zero
zero bit
zero bit and set to one
zero bit and negate
zero bit and set to zero

index register;

indicator ahd go

AD(Mi) = same as Class 9

OPERATIONS IN CIASS 11

MNEMONIC MEANING

CB Count and branch
CB+ Count, branch,
CB- Countj branch,
CBH Count, branch,

Count, branch,
cm+ Count, branch,

word
cBR- Countj branch,

word

and increment value by full word
and decrease value by full word
and increment value by half word
and refill
refill.and increment value by full

refill, and decrease value by full

-257-

I

MNEMONIC MEANING

CBRH Count, branch, refill, and increment value by half word
CBZ Count-and br&ch
CBZ+ Count snd branch
CBZ- Count and branch
CBZH Count and branch
CBZR Count, branch
CBZR+ Count, branch

full word
CBZR- Countj branch

full word
CBZRH Count, branch

half word

LIIX(X1),L1:Z,(XI):CB+(X1),

on
on

on

on

.
on zero
on zero and increment value by full word
on zero and decrease value by fulJ.word
on zero and increment value by half word
zero, and refilJ
zero, refill.,and increment value by

zero, refill, and decrease value by

zero, refill, and increment value by

EXAMPLE:

*(-1):...:(Ll)xw,BxT(@A),BxT(@4c):...

Set block “BXT” to zero

Class 12. Data Transmission Operations

General format: @p(@ll)(@o?)>~(Mi),AE(M3)

@l, = Xn in direct operations, _P < 15 in immediate operations

I@Mi)#E(MJ) = same as C1.aSs 1

OPERATIONS IN CIASS 12

!!W!@& MEANING

T Transmit
SWAP Swap

EXAMPIE:

T(15)(I),XI,NAME:Save all 15 indexregistersin block “NAME”

Class 13. Two MiscellaneousOperations

General format: @, AD(Mi)

@Mi) = sae as Class 1. P modifies 18 or 19 bits as notedbelow

-258-

OPERATIONS IN CLASS 13

MNEMONIC

SIC

I

MEANING

Store instructioncounterif ...
(mayprecedehalfword branchand
indicatorbranchonly) (P modifies
19 bits)

z Store zero (P modifies 18 bits)

The following table summarizes all 7030 longhand instructions

for quick reference purposes.

-259-

MNEMONIC CLASS

* 1,2
+JG 1,2
* 1,2
* 1,2
** 1,2
/ 1,2
B 8
BB(l,N,Z) 10
BD 8
BE 8
BEW 8
BI(Z) 9
BR 8
BZB(l,N,Z) 10
BZI(Z) 9
c 3cWJ 6
CB(+,-,H) 11
CBR(+,-,H) 11
CBZ(+,-,H) 11

CBZR(+,-,H)ll
CF 7
CM
CN@P :
CT 3
Cv 2
D* 1
D~G 1

TAB~ A2.3

7030LONGHANDMNEMONICSAND CL4SSES

MNEMONIC

D*

D/

DL
DIMF
E*(I)

EX
EXIC
F*

K
KC(I)
KE
KF

KMG
KMGR
KR
KY(I)
KVNI
L

J.C(I)

Illv

Ill(I)
13Rcv

CLASS

1

1

2
2
1
1
1

:
1

i;:
2
2
2
2
1
1

$:)

1,2

4(6)

2
1,2
4(6)
2

MNEMONIC CLASS

2
z) 2(6)
LVNI
LYE 4
LVS 5

1,2
LX 4
M* 1,2
M*MG 1,2
M~~

N@P :
R 8
R/
RCZ :
RF

:
se 4
SHF(L,R) 1
SIC 13
sL# 1

SR 4

1,2

SRT 1
ST 1,2
Sv 4
SVA 4

MNEMONIC

SWAP
Sx

T
v+
~~~
v-l-c
V*IC
V-I-CR
lJfICR
V-F
Xw
z

CLASS

i2
4

12
4
6
4

t
6
7
7

13

-260-



Coding example. The following

braic formula “MX” discussed in Chapter

thoroughly:

example

4, page

is equivalentto the alge-

78, and shouldbe studied

Ivy DATE PAGE NAME PROBLEM
73j74j75176177178179180

Mtd 1111
12 RUN 72,
1

CIMIXACRGiSSA SECTIQJNS I

L (MX)LX(X9), $P:*X=XI:* S=X2:*M=X3

LX(M), L6:(L5)LV(S), MS(M +I):BI(XVZ), LI

L(U), C($WP): +(U), CXX(M): LV(X14), $S12(I)

LX(I), L7:V+(I), X14: Z,(I) :CB+(I), *(-1)

(12) LV(I). MN(S+I): L(N) .MDV(S): *(N)> EV: +(N), 1.0: ST(N). TI

BI(RN), L3

*( N)(A), MD(S): ST(N), TI: L(U), C($WP):+(U), CXX(I): LV(X13), $S12(I]

LX(I), L7 :V+( I),X14:V+ (X13), I: L(N), TI:*(N), (X13)

+(N),(I): V% I (X13),2:CB+(I), *(-4)

L(N), MD(S): BI(RN), LI

V+ I(S), 2: B,L2

(LI)CB+(M), L5 :L(U), ICT; BiH(RZ), L4

LVI($P),*: B, $PR: CSW, $F, FM I($WP): CSW, $A, C($WP)

CSW, HM:CSW, GM: CSW

(L4)B, (x9+2)

(L3) LVI($P),* : B, $OP: CSW, EP2 ($WP)

(L6)xw, 1,( MM): (L7)xw, I, (CXX2)

-261-



I

Internalformatson the 7030. The formatsof internalwordson

the 7030 are important if the programmer is to know how to handle them
I
I using the longhand instruction set. These formats are as follows:

1.

2a.

z%.

Floating point words:

I E 5 F I Y TUV s

o 10 1112 59 63

where E = exponent; ES = exponent sign; F = normalized
fraction; T = tag, if any; TW = flag bits; S = fraction sign.

Fixed point words:

o— O1o1 N ]0—OITUVIS

o 1o11 12 32 49 59 63

where N = fixed point number of 37 bits or less, right
adjusted so that the low order bit occupies position 9;
TUV = flag bits; S = sign. Note that fixed point num-
bers are in reality floating point words, umormalized,
with exponent = O. The number is a&justed so that it
can be loaded into a value field by addressing the se-
cond half word.

Fixed point double-stored numbers, tag length

o—q 01 Q 1001 T ITUVI S

o 101112 49 59 63

P:

P<lo

o —Olol Q I T ITUVI S P> 10

0 1o11 12 49-(P-10) 59 63

Where Q = the “Q” portion, of 37 or 37-(P-10) bits or
less. ri~t ad,justedso that the low order bit appears
in bit 45 or 4~-(P-10); T = the “T” portion, riti~ ad-
justed so that the low order bit

= flag bits; S = the sign of
~c~upiesposition59;
Q.

-262-



3. Calling sequence words:

jo —Olol $xXx Iool $WA 10—010001s1
o 1o11 12 29 32 49 60 63

where “#XXX” i.sthe BCD representation of the character
“m, “ right adjusted so that the last character loaded
occupies bit positions 24-29; and “$WA” represents the
quantity in the “#WA” portion, right adjusted so that
the lcniorder bit occupies position 49.

4. Control words

o— O1o1 $Wc Iool $WA 10—01 F IS
o toll 12 29 32 49

-263-

‘lhequantities“@C,” “@WA,”“F,”and “S”are governed

by the sameconventions as in the 7090 control word,
discussed at the end of Appendix 2.



M 18A
II IIA
t,t?A

N&T&

c~d, 35-37
entry, in loadingdata, 51
modifier
in algebra,78-79
in fixed point, meaning,87

INDEx

Special symbolsare found as follows:
“*” is found in the A’s asterisk);

[“@” Is found in the D‘s dollar).

BCD characters
Table III, 66
Table 9.1, 186

Binary cards, relocatable,loading of, 58-39
Binary key 63, to controlon-lineprinting

in Index algebra,meaning,90,170 50,150,133
Accuracy of results,166-167 Binary tape
Address modifiers,j’k-83

al-lowedwith symbols,191-192
in 7050l.on@nd, 235-236
in -pgo longhand,211-212
table of, 193

Advance film, 148
Algebra

machine and CMsplay, compexativeexamples,
eulnnary of, 1goff.
see also type of algebra desired

An see stire *ess

Arrays
definitionof, 48-49
loading,on “D” cards, 49-53
printingof

form of printout,135ff.
calling sequencewords for, 1~Off.

Assembly card, 35-37
AssemblyprOgX’81D,119-120

CSIMng sequence, 197
coding examples,204-207

Assignmentof space
for ce.lMng sequences,64
for data, 48-49
for remarks,63

“*” card, 22-23
“*” convention,algebra,55,91
“*” convention,longhand,211,236
Axe8, generate,microfilm,152

“B” cards,23-26
“B” entry, loadingdata, 50
“B” modifier,in algebra,78-79,96
Backspacetape, 12.2-123

see tape
Boolean

aJ.gebra,93-96
I.iterale,in loading data, 51
modifier,inal.gebra,78-79
operations,190

Branchfng
7off. conventions,table of, 116-117

to end of calling sequence,105-106ff.
fO-, 102-103
formula set, 103-104
local, 97-102
table of types, Table 9.8, 195
in 7030longhand,240ff.
in 7090 longhand,213ff.

“C” cards, 30-31
CeJ.llng sequenceblock (“@J”)

set by “@w,” 127
set by “@P,” 123
set by “@l?,” 129

CalJlng sequenceblocks (definedon “K” cards)
altering,coding examples,180,182-lEW
definitionof non-numberedsymbolsfor, 47
tiding of, 64-67
numbered symbolsused for, 18,33

Celllng sequencewords
addressing,108ff.
altering,examples,180,182-ltU+
conventions,Table 9.9? 196
foxmat for, 65-67
in 7030I.oiwtuuld,=’klff.
7030 intarnalfo=t, 263
in 7090 longhand,214
7090 Intemd. format,233

-264-



Calllng sequences
addressingentries in, 108ff.
altering,toting examples,176-184
in code, 105
on “K” cards, 64-67
returns b, 105-106ff.

Card punches,Table 9.1, 186
Card types, ‘22-42

tables of, 42,189
Charactermanipulationprogram, 1~-l 56

c- sequence,202
Characters

card characters,punches, etc., Table 9.1,186
Eollerith,and octal.equivalents,Table III, 66
plotting,and decimal equivalents,Table VIII,151
set used by IVY, 17

Classes of operations
7030 longhand,260
7090 longhand,231

Code, complete,4, 173-176
Coding examples,78, 99, 113, 155,156,162-184

70Y3 longhand,261
7090 longhand,232

coding forms, 21
example,4,232,261

Colon
used to separatecalling sequencewords, 64,105
used to separatelonghandinstructions,212,239

Columnbinary cards, relocatable,loadingof, ~-~
Column indices,in printing, 133,135
Comment cards, 30-31
Compare remark characters,1m-l 55ff.
Complete code, 4,173-176
Concisenessof code, 167-168
Conditions

for conditionalbranching,98
for Jump features,56

Console key 35, to controlon-llneprinting,
30,130,133

Continuation
of algebraicstatements,86
of entrieson “D” and “#E’’cards,47
of types of cards, table, 42
not permittedin longhand,218,245

Continuedfractions,coding example,72
Control characters,in format, 133
Controlpunches, 21-22

see also, individualcontrolpunches
(“A,” “B,” etc.)

Controlword
descriptionof, 18
in error detection,19-20
7030 format, 263
7090 fonsat, 233-29

Control word sndifiers
in addressingca.1.llngsequences,I@-l@
in algebra,82-83
in calling sequences,65-67

CSW pseudo-operation,21k,2klff.

“D” CLWdS, 31
definitionof parameterson, 4>44,46
definitionof symbolson, 43-49
format of, 43-57
loadingof data on, 49-53
ausmb9ryof entries on, 60-61

Data
definition,on “D” cards, 43-47
double-stored,entry on “E” cards, 59-59

e@*ent bbcks, 55
loading,on “D” cards, 49-53,62
loading,on “E” cards, 57-59,60
printing of, l~ff.
plXIChiIlg of, 146-147
reading or writing on tape,33-35
suppressed,49
use of jump feature,55-56

Decimal equivalentsof 7050 indicator
EUle1710UiCS,255-256

Decimal equivalentsof characters,Table 9.1,
186

Definitioncards, 31
definitionof parameterson, 43-44,46
definitionof symbolson, 43-49
format of, 43-57
loading of data on, 49-53

Differenceof squares,example, 167
Dimensions

see arrqw
Direct algebra

fixed point, 87 ff.
index register,90,100,170

Disk program, 152-153
calling sequence,201
used to “ping-pong”code, 209

“~” symbols,17-18
$CS, 84-85, 123,127,129
@D, 8>,110-114,215
@E, 115
$&,85-86,191,204ff.
@, 84,96
$P, lolff.
$z,85,108-109,211
not allowed in calMng sequences,105
subroutines,118-156
table of, Table 9.2, 187ff.

Double-storeddata
coding examples,171-173
entry of, on “E” cards, 58-59
modifiers for addressing,79-80, 83-84
printing of, 143-144
punching of, 147
7030 internalformat,262
7090 internalformat, 233

Dump program, octal, 130-131
Dynamic algebra

fixed point, 88
index register,90,100,170

-265-



“E” C81Xh3, k

format for, 57-59
sums.v of entries,Table II, 61

“E” entry in data loadlng,53,,61
Efficientcoding, 162-168
End-of-file

on card reader, 119
on tape, 122

Enter data card8, W
format for, 57-59
summaryof entries,Table II, 61

Entries, reference point, Table 9.8, 195
Equal sign, megning of, 68

symbolsallowed left or right of, 191
Equivalentblocks

definitionof, 55{61
restrictionson, ‘E”cards, 57-%

Errors
controlword in detectionof, 19-20
detectionof, 14-16
indicationsof, 157-161

by “$DK,” 153
by “@R,” 145
by “@P,” 124

Examples
see coding examples

Execute card, 39-40
Execute instruction,115
Exponent digits, in printing, 139
Expressionmdlfiers, 83-84

“F”cards, S-39
FAC, 85-86, 191
FAD, 85-86, 191
Fixed point algebra,86-89

modifier,78-79
operations,190

Fixed point Iiterals
in definitionof arrays, 48
in loadingof data, X,51

Fixed point numbers
printed as integers,133
punched ae integers,147
70Y3 internalformat, 262
70g0 internalformat,233

Floatingpofnt algebra,69-86
allowed operands,73
exunples,70ff.
operations,190

Floatingpoint Iiterals
in algebra,73
in loadingdata, 51
in 7050 longhand,236,246-247
in 7090 I.onghand,211,219-220

Floatingpoint numbers
7030 internalformat,262
7090 Internalformat,233

Formt statements,for printing 132ff.
manipulationofcharactersln, 154-1!%
sumnaryof conventions,lgg-200

Formts, card, Table 9.3,189

Formula
branchi~ between, 102-103
de.?initi~nof, ~“
entries,Table 9.8, 195
jump feature,104-105
may not be written on tape or disk, 208
names. defined on “I” or “L” CardS~

31,-40-41
names. not definedwhen “A” card encon-
ter;d, 35

number of, 27
organization,diagram, 114
in 703%310nghana,240 ff.
in 7090 longhand,213 ff.

Fonmila set
branchingbetween, 103-104
definitionof, 27
entries,Table 9.3, 195
jump feature, 104-105
names, assignedto relatable bl.ocks~x
~es, defined on “D” cards, 31,,40-41,47
organizationof, diagram, 114
writing of, on ape or ~sk~ 2@
in 70Xl IDnRhand.240 ff.
in ~OjO I.On&and; 213ff.

Forward mace tape. 123
IYaction‘&gLts,-ii printing, 1x

Generateaxes, microfilm,152
Graphs, on microfilm,147-152
Grid

label, microfilm,149-150
select,microfilm,148-149

Hard copy, microfilm,148
High densitytape, 122
HollerlthCharacters,and octal equivalents

Table III, 66
!Cable9.1, 186

Horizontaloption,microfilm,148-149
Ml’R,used to end 7090 ca.Ulng sequences,214

“I” cards, 37
“I” entry, in data loading,52-53
ID, on disk, 153
ID, on tape, 122

checkingof, 123
Identificationcard, 22-23
Emnediatealgebra

fixed point, 87ff.
Index register,90

Immediateremarks, 14.4-145
Index loops, 92-93, 99-1CO, 169-171,195
Index mult%ples

coding examples,168-1@
loading of, 53
usage of, 54

Index registeralgebra,89-91
operations,190

Index registers
always t-e on positivevalues, 76,w
as addressmodifiersin algebra,75-78

-266-



Index registers(continued)
definitionof number of, 28-29
in efficientcoding, 163
renamingof, 91-92
usage of, in 7030 longhand,241-242,245
usage of, in 7090 longhand,217-218
used to address cal.llngsequencewords, 108ff
used to return to calling sequences,
105-106ff,195

In&Lcatormnemonics,Table A3.2, 255-256
Instructioncards, 37
Instructions

Reading orwritlng on tape, 35-3?
table of, algebraic,190
See also operations

Instructionsb operatar
calling seauence. 201

Integerdigits, in”priitiig,la
Internalformatsof words

(7050),262-263
(7090),232-2~

Interpolants,loadingof, in data, 52-53
IfiDiard, 24-25

J@ CSXd, 24
Jump feature

Ln data _l_oading,55-56,61
in efficientcoding, 165
in formulasand formula sets, 104-105
restrictions,on “E” cards, 57-58

“K” blocks
See calling sequenceblocks

“K” CSXdS, 32-33
format for, 64-67

Key 35(63),to controlon-lineprinting,3,1~,133

“L” cards, 37-38
“L” entries

See local.entries
Label grid, microfilm,149-150
Large programs,how to code, 203-209
Iil.neformat, inprlnting, 133,138
Llterals

in algebra,73
in definitionof arrays, @
in loadingof data, 50-51
in.parameteralgebra,45
in 7030 longhand,2$,245-2ti
in 7090 Icmgband,211,219-220

L See local.entries
I&ding

of data on “D” cards, 49-53
of parameters,43-44,46

Loadingprogram
entry to from code, 119
return from, using “X” card, 39-40,41,119

Iocal entries
conditionalbranchingto, 97-98
definitionof number of, 28

Local entries (continued)
examplesof, 98-99
pathfinderbranchingto, 101-102
restrictionson, 100-101
unconditionalbranchingto, 97
in 7030 longhand,240ff.
in 7090 longhand,213ff.

Logical algebra
See Boolean algebra

Imghand =dS, 37-39
for 70~, 235-263
for 7090, 210-234

Longhand COdi~ (7050), 235-263
example,261
restrictionson, 244-245

Iongbandcoding (7090),210-234
example,232
restrictionson, 217-218

Imghand operations(7030)
general format, 240
table of, 260

Ion@and operations(7090)
general format, 212
table of, 231

mops
index, 92-93,99-100,169-171,195
with use of local entries,99-1(X

Law density tape, 122

‘IS’entry In data loading,53
Machine number, 85-86, 191
Manipu&ationof characters,154-156
Manipulationof the symbol table 203-209
Matrices (two-dimensionalarrays~

definitionof, 48-49
loading,on “D” cards, 49-53
multiplicationof, example,99,113
printing of
calling sequence for, 140
form of printout, 135ff.

MCP
control ca.ras, 23-26
70M longhandI/~ not allowedwith, 245

‘~” modifiers,211-212,238
Microfilm

calling sequence,201
plotting on, 147-152
printing on, “M” control, 133

Mnemonics
7050 indicator,255-256
7030 longhand,26Q
7090 hgbend, 231

Mod.ifiers,
address, 74-83
allcwed with ~boh=, 191-192
expression,83-84
tables of, 193,194
in 7030 longhand,237-239
in 7090 Ion@and, 211-212

Move charactersamong remarks, 1%ff.
Multiples,entry of, in data, 53

See also index multiples

-267-



N.S.I.F.E. field in format statement,139
Names

See symbols
NBA, 85-86,191
NJ+ 85-86,191,205ff.
Numbered symbols,18

definitionof, ~
used in “K” and “R” blocks, 32,33

Numbers
format controlof, 1%ff.
printing of, 1*ff.

“@” cards, 33
Octal

equivalentsof chexactem, Table 9.1,186
llterals,in loading data, 53
printingof tags in, 133

Octal.dump prOgMID, 1~-l 31
ca~ng sequence,198

Off-lineprinting,control “T,” 133
“$~” modifiers,2*-239
On-lineprinting

key 35 (63) used to control,~, 1Y, 133
Operands

in algebra,table of,
in Boolean,96
in fixed point, 87
in floatingpoint, 73
In index algebra,89

Operationmodifiers (7030)
Oneratlons

87ff.

2%-239
-— —–-—

algebraic,table*of,Table 9.4,190
Boolean,93
fIxed point, 86-87
floatingpoint, 69
index register,89
longhand,7050 format, 240
longhand,7090 format, 212

Operator,Instructionsto
“q” cards, 33
“##P” routine, 153-1~

Organizationof code, diagram, 11k

“P” card, ~
Page spacing (pfintprogram), 131-1~
Parabolicintegration,example, 172
pa.m~el operationon ts e, 124
Parameteralgebra,44-4?

as addressmodifier,75-78
“@D” not allowed in, 111
as part of double-storemodifier,~-80
in definingremarks,62
Ln exponents,73
in index loops, 92
in loading data, 50

Parameters
definitionand loading of, 43-44,46
printingof, 141-142

Parentheses
conventionsfor use, in algebra,70-72,190
dlagrsmof use, in algebra, 71
efficientcodingwith, 1@+

Parentheses(continued)
encloseaddressmodifiers,74,211,258
enclosebranches in algebra,74ff.
enclose callhg sequences,64,105
enclose dimensions,“D” cards, 48
enclose double-store specifications,

“E” CtiS, ~
enclose entry points, in longhand,213,2@
enclose specialentries, “D” cards, 51-53
in index loops, 92
must be closed in iuxnediateremarks, 145
not allowed in parameteralgebra, 4.4
on “S” cards, 27ff

Pathfinderbranching, 101ff.
in 7030 &n@and, 241ff.
fn 7090 I.onshand,213ff.

Pathfinderregister, 101
In 7050 longhand,241ff.
in 7090 longhand,213ff.

“Ping-pon@g” a code, 2Q5-2Q9
Plotting characters

Table VIII, 151
Table 9.1, 186

Plotting,on miczmfilm,147-1P
Points,p.lotttngof, on microfilm,151-152
Polynomialevaluation,examples,72,166,168
Print card, ~
Print prugrem, 131-146
Pqlnt suppresscard, 30
printing

double-storednumbers
t

143-144
error cements, 124,1 5,153,157-161
immediateremarks, 144-145
listingof code, ~
matrices and arrays, 142-143
parameters,141-142
ramsrks, 132, 1*

Problem card, 24
Punch p~grUll, 146-147

calling sequence,198-199
Punches,Table 9.1, 186

“Q” portion of double-storeddata
loading of, 58-3
modifier for handking,~-80,83-84
printing of, 143-144

Quadraticforux&s,example,72
Quantity

See “Q” portion

“R” cards, 31-32
format for, 61-64

“R” entry In data loading,52
Read disk, 153,208
Read tape, 123-124

examples,with long codes, 20>2@
Reciprocaldivide

definition,69
in efficientcoding, 163-164
uses of, 72

Reel card, 25-26
Referencemint entries,Table 9.8, 195

-266-



Relocatablebinary cards, loading of, 38-39
Remark cards, 31-32

format for, 61-64,1~2ff.
Remarks

definitionand Ioaciingof, 61-64
manipulationof charactersin, 1*156
titi+ine, 62
m,anbereasymbolsused fort 18,32
printingof, 132,134
used as format statements,132ff.,199-200
Writing of, on microfilm,1~-l 51

Remarks, inwdiate, 1U-l 45
Renamingof an index register,91-92

in 7050 longhand,242-243
in 7090 longhand,215

Repeating,in data loading, 52
Reservationof space

for calling sequences,64
for data, 48-4$1
for remarks,63

Returns to c~ng sequences,105-106ff.
Rewind tape, 122
Row indices,in printing, 133,135

“s” card, 26-30
“S” entry, in data loading,52
Select grid, microfilm,148-149
Serial operation,on tape, 124
Sign modifiersin algebra,81
Simpson~s rule, example, 172
skipping,in data h3ding, 52
Spacing

Page (Print),131-132
precedingprinted number, 1~
tape, 122-123

special “$” symbols,Table 9.2,187ff.
squares,differencesof, example, 167
9fA, usage of, 215-216
Start card, 26-30
Store address

symbol,definitionof number of, 28
use of, in algebra,75-78
use of, in 709 Ian@and, 243-2&
use of, in 7090 tin~~a, 215-216

Subroutineconventions
in 70m longhand,241ff.
in 7090 longhand,213ff.
See also Pathfinderbranching;

CalMng sequencewords
Subroutinedata blocks (“#D”),usage of, 110-

in 7030 longhand,242
in 7090 longhend,215

Suppresseddata blocks, 49
SVA, usage of, 243
Swap modifier,83
Switch test prom, 126-128

“#CS” set by, Table VI, 127
Symbol table, 18

manipulationof, 203-w
Symbols

allowed In algebra,191
A, X, and L, 28-@

.

Symbols (continued)
definedby programmer,17,46-48
for equivalentblocks, 55
for parameters,43-44
nunbered, 18,19
order of definitionof, 19
single character,19
special “S,” 17-18 84-86
system (7050) 236-237
table of, Table 9.2, 187ff.
in 7030 longhand.235-236
in 7090 longhand,210-211

System symbols (7030),236
Table A3.1, 237

“T” card, 33-35
“T” portion of data

modifler for, 79-8o, 83-89
printing of, 43-144

in octal,133
restrictedto unsigned fixed point

integer,~
Tables

See item for which table is desired
Tag

See “T” portion
Tape

assembly,read by @P, 119-120
assembly,written by @P, 13,35-37
used in large codes, 203-205
used to simulatedisk, 152-153

Tape, binary
manipulationof, “T” card, 33-35
manipulationof, “STP,” 121-12b
used for “ping-ponging”code, 2u>-2uj

Tape control card, 33-35
Tape manipulationprogram, 121-126

example of caL1.ingsequence, “K” card, 67
Tape numbers,Table V, 120-121
Test trigger routine, 128-1~

ca~ng sequence,1Y7-198
“@S” set by, Table VII, 1~

Transfer tables, 107-10!3,171

Units of an expression,86
Unload tape, 122

Variable length calling sequences,179-182
Vectors

114 definitionof, 48-49
loading,on “D” cards, 49-53
plotting of, on microfilm,1>1
printing of

calling sequenceentry for, 139-140
form of printout 135ff.

Vertical option,microfilm,14tJ-14y

“W” entry, loading data, 51
Write

code on tape, 205-.2og
end-of-fileon tape, 122
end-of-taperecord, 122

-269-



Write (continued)
record on disk, 153
record on tape, 124

“X” card, 39-W

Xn See index registers

“Z” entry in loadlng data, 51-52
Zeroes

entered in data, 51-52
in address (#Z), 85, 106-109,211,2%

-270-


