C.7 iy

-t

L W

LOS ALAMOS NATIONAL LABORATORY

P N

oo

LAMS-2607 N
14 REPORT COLLECT!
O EPRODUCTION

COPY

LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA o LOS ALAMOS ~ NEW MEXICO

THE IVY SYSTEM

I

3 9338 00371 0604

I

Il

Wil

LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
Commission, nor any person acting on behalf of the Com-
mission:

A. Makes any warranty or representation, expressed
or implied, with respect to the accuracy, completeness, or
usefulness of the information contained in this report, or
that the use of any information, apparatus, method, or pro-
cess disclosed in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any informa-
tion, apparatus, method, or process disclosed in this re-
port.

As used in the above, “person acting on behalf of the
Commission” includes any employee or contractor of the
Commission, or employee of such contractor, to the extent
that such employee or contractor of the Commission, or
employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his em-
ployment or contract with the Commission, or his employ-
ment with such contractor.

Printed in USA Price $ 3.50. Available from the

Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

0604

M

LAB. UBS,

i

LOS ALAMOS NATL

LB

3 9338 00371

I

1
1

LAMS-2607
MATHEMATICS AND COMPUTERS

(TID-4500, 16th Ed.)

LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA _ LOS ALAMOS NEW MEXICO

REPORT WRITTEN: August 1961
REPORT DISTRIBUTED: October 6, 1961

THE IVY SYSTEM

by

Forrest W. Brinkley
Bengt G. Carlson
Chester S. Kazek, Jr.
Clarence E. Lee
Zane C. Motteler

MANUAL EDITOR: Zane C. Motteler

Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission

All LAMS reports are informal documents, usually prepared for a special pur-
pose and primarily prepared for use within the Laboratory rather than for
general distribution. This report has not been edited, reviewed, or verified
. for accuracy. All LAMS reports express the views of the authors as of the
time they were written and do not necessarily reflect the opinions of the Los
Alamos Scientific Laboratory or the final opinion of the authors on the subject.

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

ABSTRACT

IVY, an algebraic coding system for the IBM 7090 and 7030 elec-
tronic data processing machines, is described. A sample code is first
illustrated for purposes of familiarization. The general features of the
IVY system are then discussed in the Introduction. The body of the text
discusses card types, the entry of data, remarks, and calling seguences,
and the formats for writing code in the IVY algebraic language. Finally,
subroutines incorporated in the IVY system and error indications given by
the system are described, and some coding examples are shown. The final
chapter is composed of tables for reference purposes. The appendices dis-
cuss more sophisticated coding techniques and the longhand coding conven-

tions for the 7090 and 7030,

73[74]78{76]77|78]{79]80
IVY oate PAGE NAME PROBLEM
26 JUNE | JOEABLOW DOT PRODUCT pjo|7] [rr[$[D

Line No. | 2 72 CODE
1 ﬁws“&@w, A 7-5360 [)212 BOT TO 1102HI00000

lzl l [s (0}, AlQ), X(4), L(3), R(2) l l l l
3 D} AO(7)22.15, 3.0),.223+), 5.732,~2.7),~032~1, 726,

l 4 l l B0(7)= 9.2222,.00063, 2.575,-.057-,-33.233-5, 2.31617,.43, l ’ l I
5 [FLOW, SUBR, T(I)

Is l [rﬂ. Ri=CRP, (06T APRODUCT =) L.O.1.7.2,88S l I I l
7 R|R2:ERROR.MCOUNTS A OF ATHE A TWQ A VECTORS A ARE A NOT AEQUAL. 8

l 8 | l C] FLOW * CODE.A CONVERTS A AND A GOES A TO A SUBRQUTINE . ‘ I | | I
9 AlSWR2, !

’lo] J t‘ﬂ 1 {FLOW, ($P, $AP: $RD2,2), (3P, SUBR: AG(SW): BO(SW): T(SWA)+(), l(I] l
n ($P,L1),

l|2' "«g; ~*1_L($R $PR: SE, RI(SWP): $51, T(SWA) +1),($P,SLD), - 'J"'{"“ '
13 K L1, (3P, $PR: $P, R2($WP)), ($P, $LD), SE.FLOW, ---f-eexit

lml l AlswR2,2 l l l
15 I|SUBR. X 4,3D(4), $DizX}, $D2:X2, $D3:X3, $04:=0,

|16| I X1=$Z(X4+1,$WC), X2=$Z(X4+2,8WC), I l I l !
17 (LDXI=X22NE, X2=$Z(X4+1,SWA), X3=$Z(Xa+2, SWA),)

llel E L2, $D4 =M+ $Z(X2+1) % $Z(X3+1), I I l l
19 X2:X2+1, X3=X3+1, Xl= XI-l, (L2} XI=N&,

lzol l X1=82(x4+3), $2(xI) =$D4, _ l l l l
21 L3, XI1.A=8Dl, X2.A=$D2, X3.A= $D3,(X4+5),

fza') L1, X4=X4-1,(L3), Tl ’ , , ,

A I$RD2,1

[T

[T

NERN

HERE

A SIMPLE AND COMPLETE IVY CODE

PREFACE

The facing page illustrates a complete, though trivial, code in
the IVY language, for finding the dot product of two vectors. This is
included at the start of the manual in order to familiarize the reader im-
mediately with the appearance of a finished IVY code. As the discussion
in the manual proceeds, the reader can occasionally refer back to this
example for enlightenment on some of the technliques discussed. Finally,
in Chapter 8, a discussion of the organization and philosophy of this
code will occur, a discussion which applies to any IVY code regardless of

its length.

ACKNOWLEDGEMENTS

The editor is indebted to Bengt Carlson, Chester Kazek, Jr.,
Forrest Brinkley, and Clarence Lee for their careful proof reading of
this manual, much of which was done on their own time, and for their many
helpful suggestions; to Justine Stehl, for producing the IVY tree; to
Sue Vandervoort, for typing the rough draft; to Grace Cole, for typing
the final draft; and to Bea Hindman, for her excellent job in lettering

the examples and drawing the illustration,

CONTENTS

Page
Abstract 3
A Simple and Complete IVY Code L
Preface 5
Acknowledgements 4
Table of Contents 9
Introduction 11
Chapter 1. Preliminary Remarks 17
Chapter 2. Coding Forms and Types of Cards 21
Chapter 3. Definition and lLoading of Data, Remarks, and
Calling Sequence Blocks 43
Chapter 4, The IVY Algebraic Language 68
Chapter 5. Flow of Control, Calling Sequences, and the
Execute Statement 97
Chapter 6, IVY Subroutines 118
Chapter 7. IVY Error Indications 157
Chapter 8. Coding Examples 162
Chapter 9. Summary and Tables 185
Appendix 1. Manipulating the Symbol Table 203
Appendix 2, The 7090 Longhand Instruction Set 210
Appendix 3., The 7030 Longhand Instruction Set 235
Index 264

INTRODUCTION

The coding system described in this manual, the IVY system, repre-
sents a considerable extension, sophistication, and simplification of ear-
lier attempts by the authors on the design of an efficient and practical
coding system for both the casual and experienced programmer. TFreqguently
an individual, usually called a 'programmer" or "coder'in this manual,
concerned with the solution of a complicated problem, must resort to the
use of computers. For such people IVY was designed. Detailed knowledge
of the behavior of various different computers is not required, but, if
available, it can be applied when very fancy coding techniques (presumably
by an experienced programmer conversant with a particular class of machines)
are warranted. However, it is believed that the vast majority of problems
in mathematical physics amenable to computer solution can be solved ade-
quately, almost in their entirety, in the simple algebraic language sup-
plied by IVY,

The IVY system is a load-and-go, one-pass compiler-assembler con-
sisting of an algebraic language which can be used on any of a class of
computers for which the system is designed, as well as facilities for cod-
ing in the language of the particular computer on which a program is being

run., The main purpose of the system is to simplify and expedite the

-11-

progremming of problems and the debugging of resulting codes, the schedul=-
ing of machine time in installations with two or more types of machines,
the exchange of codes, and the use of these at other installations.
Another purpose of the system is to provide a load-and~-go compiler which
gives the programmer closer touch with the computer hardware, besides
supplying numerous other new and unique features, many of which have never
before been offered in any system of this type.

The IVY algebraic coding system has been designed for coders who
are somewhat familiar with electronic computers and programming tech-
niques, but who do not have a detailed knowledge of a particular computer.
The algebra itself is written in a system called machine algebra, as
opposed to FORTRAN and other algebraic coding systems which simulate
display algebra, that is, the algebra of equations and formulas in the
traditional mathematical sense. This machine algebra is a system similar
to display algebra except in conventions regarding the use of parentheses.
In addition, the coder is allowed (and often required) to specify actual
index registers (unlike FORTRAN), to utilize a "store-address"feature,
and to construct loops and sequences of code fully as complex as those
possible in longhand coding, without the many restrictions imposed by
FORTRAN~like systems. A code in the IVY algebraic language will be ac-
cepted, unchanged, by any computer for which IVY is available.

As previously mentioned, a longhand coding system is available in
IVY, which allows the entry of any instructions in the instruction set of

the particular machine being used, following IVY addressing conventions.

-]

Of course, use of this feature will make an IVY code incompatible with
machines of a different type. Nevertheless, in practice such longhand
portions of a code are usually short, and a separate set of longhand
cards can be produced for each computer, and one set substituted for
another when one changes computers. For the programmer who is interested
only in longhand coding for a particular machine, IVY presents a fast
load-and-go longhend coding system.

The "IVY" system consists essentially of three parts: the loading
program (BLD), the assembly program ($AP) and various subroutines (print,
punch, tape manipulation, etc.). Only that portion of IVY currently in
use is in core memory at any one time; & master control program calls in
other packages as needed. Thus all but a few thousand words of core are
available to the problem program. Core storage is never taken up by un-
converted code, which, instead, is written on a tape designated by the
programmer at initial loading time. Once a program is debugged, this tape
may be saved and used to load the program whenever it is run thereafter,
saving some machine time, since this tape contains a condensed version of
the code. This tape will in general not be interchangeable among
machines of different type for which IVY is available, since the con-

densed code on the tape is in a partially assembled form.

Each IVY deck begins with an "S" or "start" card, which initializes
IVY for a new program. (IVY programs can be stacked one behind another

in the card reader or on a BCD tape prepared by off-line card-to-tape

-13-

equipment)., This "S" card also contains specifications of the basic quan-
tities of the particular program, such as the number of independent "store
address" quantities, the number of index registers desired (which may be
more than the particular machine contains, in which case the extra index
registers are simulated with a slight loss of efficiency), the number of
formulas desired, and the maximum number of branch references within a
formula. Following the "S" card, cards controlling the definitions and
loading of data, remarks, and calling sequence entries, mey occur. The
instruction cards are normally at the end of a deck. Preceding, and in-
termixed with, the instruction cards are "A" or "assemble" cards which
control the writing of the code on tape and its subsequent conversion
into machine language. The code may be followed by an "X" or "execute"
card, vhich specifies the formula set at which execution starts.

The chief advantage of IVY, aside from its simplicity, is that no
preliminary processing is necessary, such as obtaining binary cards from
a separate assembly program. Thus, not only is the assembly process im-
mediately under the programmer's control at all times, but also the
source deck and object deck are one and the same. Corrections can be
made in the source deck without the necessity of a tedious reassembly to
obtain a new object deck. Furthermore, because of a unique new type of
coding form, one comes closer than ever before to punching cards directly
from the flow chart. And finally, IVY contains a feature which enables
one to obtain a listing of his code if desired, at the loading time.

During its one-pass examination of the source deck IVY detects a

-14-

great many different types of errors. If a detectable error occurs, IVY
prints out the contents of the card on which the error occurred, one or
more symbols to aid in localizing the error on the card, and a number,
This number can be looked up in a table which is available at the console
of each machine for which IVY is available, and which will be distributed
to manual holders separately from this manual. The table entry gives an
exact description of the error. It is in the detection and treatment of
errors that one of the chief advantages of IVY occurs. If errors are de-
tected in code, for instance, the programmer is still permitted to exe-
cute his program up to that point where the first executed error was de-
tected. From this point a transfer is made to IVY, which prints out a
comment to the effect that execution cannot proceed further, and gives
some indication as to where this point is located. Similarly, if a data
block has been defined or loaded incorrectly, references to this block
are replaced by similar transfers. Thus the programmer, in a debugging
run, obtains not only information on coding errors detectable by Ivy,

but also the results of executing the problem code to the point of the
first error encountered in execution, allowing him to ferret out both

coding errors and logical errors in one and the same run., As far as is

known, IVY is the first programming system ever designed to allow this
feature. Of course it is possible that errors detected may be of such
a magnitude as to make compilation impossible, in which case IVY will
suppress execution., However, it must be asserted that errors of such

magnitude seldom occur, and that IVY is unique in failing to penalize

programmers for minor programming errors, by allowing execution when
possible. (No claim can be made that all possible detectable errors are
caught, since to do this would require an impractically long program.
Hopefully a useful balance between detecteble and non-detectable errors
has been maintained.)

The IVY system and its features, as outlined in this Introduction,
are discussed in detail in subsequent chapters, with special emphasis on
the algebraic system and its conventions. A knowledge of the algebraic
addressing conventions is necessary to code in one of the particular long-
hand systems, which therefore are described in appendices at the end of
the manual, briefly but completely, and in a manner assuming some famil-
iarity with earlier chapters, and, of course, the particular computers

being utilized.

-16-

CHAPTER 1

PRELIMINARY REMARKS

Character set. The character set used by IVY is the well-known

Hollerith set, i.e., the character set used by FORTRAN, which is avail-
able on the IBM 026 punch. This set consists of the alphabetic upper-
case characters, the numbers 0-9, and a few punctuation marks and special
characters. Limited as it is, this character set will be used until such
time, if ever, as extended character set keypunches (IBM 9210) become
generally available. For reference purposes, the Hollerith set consists
of the characters O (numeric zero), 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
b, E, F, G, H, I, J, X, L, M, N, § (alphabetic "g"), P, Q, R, S, T, U, V,
Wy X, Y, Z, +, =, %, [, =, ', o, :, 8, (,), comma, and blank.

Symbols. IVY symbols and symbolic names (with the exception of
a few special symbols mentioned later) must consist only of alphabetic
characters, that is, of the characters A, B, C,...,Z. Symbols may be of
any length up to 6 characters. Examples: AXB, SAM, TEMP, C, PQRX,
VEL{CY .

Special symbols. Certain symbols for internal IVY subroutines,

-17-

date blocks, and operation conventions, start with the character "g",
which is not available as a symbol for IVY remarks, data, or code. Two
of these symbols, PLD and AP, were encountered in the Introduction.
All "g" symbols will be discussed and defined as the need arises; a
table of "g" symbols appears in Chapter 9, page 187. Note that only
these internal IVY symbols begin with "g": any symbol defined by the
programmer must begin with an alphabetic character,

In addition, the programmer may define symbols for certain numbered
quantities and numbered blocks on the "S" card (see below, page 26), e.g.,
A1, A2, etc. for stored addresses (page 28); X1, X2,..., for index regis-
ters (page 28); L1, 12,..., for internal branch references (page 28); as
well as numbered blocks beginning with an alphabetic symbol as defined
above, used only to represent remarks and calling sequence blocks (page
29).

*

The Symbol Table., All programmer-defined symbols are placed in
the IVY symbol table. Tnis table consists of two parts: (1) a twenty-
six entry table, with each entry corresponding to one letter of the
alphabet, which is always in core, and (2) a variable length table hav-
ing one entry for each symbol of two or more characters, which is con-
structed by IVY as the symbols are defined., Each entry of these tables
contains the following items of information: the symbol itself, in BCD;
two addresses used by IVY for searching purposes; and a control word,
containing a count of the items of information in the block, a flag in-
dicating what type of information is loaded, and the base address of the
block minus one. Once constructed, the symbol table is always in core,
available to both IVY and the problem program. With the exercise of due

caution, the problem program may consult and alter the symbol table at
will, using conventions described in Appendix 1.

*
Paragraphs marked with "*" and single~-spaced, while informative, are
not essential to the understanding of the IVY system, and can be
skipped if desired.

-18-

The Order of Definition of Symbols. Since IVY is a one-pass pro-

gram, all symbols must be defined before they may appear in the defini-
tion of another symbol and before they are referred to by code. Symbols
can be defined on "S", "D", and "R" cards, described on pages 26, 43,and 61,
Furthermore, all symbols must be defined before any code is converted,
regardless of whether the code refers to the symbols or not. Since the
symbol table is loaded in core immediately preceding converted code, the
symbol table must be full to avoid destroying code with new entries.

All symbols must be defined on "S", "D", or "R" cards except for
symbols consisting of a single alphabetic character, other than the spe-
cial symbols "A", "X", and "L" (pages 28-29). Single-character symbols
never need be defined since IVY always contains the 26-entry table for
the single alphabetic characters, Note that by a symbol being defined
is meant that the symbol must be entered in the table, although it need
not have been assigned an address, value, or length unless the conver-
sion of code or definition of another symbol requires such assignment,
(For detailed instructions on defining and/or assigning values to sym-
bols, see pages 43-61.)

*The Role of the Control Word in Error Detection. By examining
the flag of the control word for a symbol, mentioned above, page 18,
IVY detects such obvious errors as attempting to perform arithmetic on
code and remark blocks and attempting to transfer to data or remark
blocks from the problem program. If the entire control word is zero,

meaning a symbol has been defined but the block has not been loaded
such errors as referring to the block in arithmetic instructions and

*Detailed discussions of the symbol table and control word formats, of
interest only to the more-than-casual coder, will be found in Appendix]
and in the various appendices relating to particular machines for which
IVY is available.

-19-

attempting to define another symbol in terms of this one can be dis-
covered. References to undefined symbols are, of course, easily de-
tected because of the absence of the symbol from the symbol table.
Ordinarily these errors are not of such magnitude as to inhibit com-
pilation of the problem program, and whenever this is true, execution
is allowed to proceed to that point where the code is first affected
by such an error.

=20

CHAPTER 2

CODING FORMS AND TYPES OF CARDS

Coding Forms. There are two forms available for IVY programming. The

first form is divided into one column for the control punch (described later

in this chapter) and 71 columns for the entry of information, with the

last eight columns left for program identification. The contents of the
program identification columns are not available to the program. The
second form is similar to the first, and in addition it contains guide
lines in the margins for drawing arrows, to mark flow of control, thus
making the coding sheet, in essence, a flow chart. These arrows are not
punched on the cards, but are merely intended as a convenience to aid
the programmer in reading his code, and in masking it easier for others to
follow and understand the flow of the program. This feature should also
lessen, if not eliminate, the need for flow charts,

Control Punches. The first column of IVY cards is always reserved

for the control punch. The function of the control punch is to designate
the type of information found on the cards, and to give instructions to

the compiler, or both. A card containing a blank in column 1 is assumed

-21-

to be a continuation of the previous card and to contain the same type
of information. Certain types of cards may not have a continuation card
following them; this is noted, when applicable, in the following descrip=-
tion of the particular card types. The continuation of "R", "K", or "I"
cards if any, must contain a blank in column 1, as explained below,

Tdentification Card. An "identification card" must precede any

code which produces off-line output for printing, punching, or plotting
on the SC-4020. For consistency this card should precede all IVY decks.,
(This card is the standard ID for the IBM 7090, as adopted by the Los
Alamos Scientific Laboratory and described in a bulletin distributed to
7090 users dated April 14, 1961.) The function of this card is to iden-
tify any off-line output (listings, cards, microfilm, etc.) with the pro-
grammer's name and telephone number, so that it can easily be separated
from other programmers' output and delivered to the individual concerned.
To aid the operator in logging, the contents of this card are printed
on-line.

The format of the Identification Card is as follows:

COLUMN PUNCH

1 * (Produces BCD print ID)

2 * or blank (* if BCD off-line punching is done)

3 * or blank (* if binary off-line punching is done)
b # or blank (¥ if 4020 tepe is to be prepared)

o~T maximum time in minutes

8-26 programmer's name and phone number

27-30 coder's number

22

COLUMN (continued)
31=33
34-36
37-38
39
4o
ko
Ly
45
46
47-48

73~80

MCP control cards,

name of code

group for which problem is done

category number

2 (for IVY codes)

G if debugging, H if production

machine used (Local conventions are used)
0

0]

0

number of tapes used exclusively by and
for this code*

programmer's name

These cards may be required only in decks run

on the 7030 if IVY is run under MCP. In this case these cards must pre-

cede any deck run on the 7030. These cards may be included in any IVY

deck on any machine, however, and if not needed, will be ignored.

The purpose of these cards, all of which have a "B" in column 1, is

to define input-output units in a symbolic manner; MCP then assigns abso-

lute units to these symbolic numbers well in advance of the time the pro-

gram is run, so that tapes can be mounted properly, etc. These cards

*
The systems tape, standard print output tape, etc., are not included in

this count.

-23-

must be the first ones present in any IVY deck which is run on the T030;
and, as mentioned above, can be removed for 7090 runs if desired.
The various "B" cards required are as follows:
A. Job Card.
152 910
B I | J@B, IDENTIFICATION

Any identification desired, e.g., name and phone number, can be placed
after the operation "J@B." Local conventions must be observed.

B. Type-of-Problem Card,
1,2 9|10

B IVYGP,

This card merely specifies that the problem coming up is in IVY language
and will assemble and go.

C. Input-Output Definition Cards. One of these cards must be entered

for each tape unit the programmer uses outside the system, i.e., for
tape units other than the standard input-output tapes used by IVY.
The format for these cards is as follows:

|2 9{10 68169
B|IfDNAME| I@D,TAPE,EXIT,CHANNEL,NUMSER ,M$DE ,DENSITY, DISPSITISMREF
where:

1. "IPDNAME" represents any symbol of from one to six alphabetic
characters, used by MCP to be synonymous with the input-output require-
ment stated on the card.

2. "Igp," "TAPE," and "EXIT" occur as illustrated.

3, "CHANNEL" is any symbol from one to six alphabetic characters
in length specifying some channel, the absolute address of which is as-
signed by MCP. Different symbols will be assigned different channel

addresses. If the "CHANNEL" field is null, it is assumed that the channel

-24~

assigmments of tape units are irrelevant, and MCP assigns any free tape
unit regardless of channel,

Ik, "NUMBER" is the IVY tape number in hexadecimal (1,2,3,...,9,A,
B,C,D,E,F). See page 120.

5. "MPDE" may specify either "@DD," for odd parity, or "ECC," for
odd parity plus ECC checking.

6. "DENSITY" is either "HD," for high demsity, or "LD," for low
density. This must agree with the density, if any, requested for the
tape in the calling sequence to "$TP," the tape program. See page 122.

7. "DISPPSITIAN" may be "NSAVE," for "do not save tape reels in
any case;" "CSAVE," for "save tape reels only if job is complete;"
"ISAVE," for "save tape reels only if job is incomplete; or "SAVE," for

"save tape reels in any case,"

8. "REF" is an octal number corresponding to the hexadecimal tape

number in 4 above.

D. Reel Cards. A reel card must immediastely follow the "I@D" card to
which it refers, or another reel card referring to the same unit
and channel. The format is:

1|2 9l10

B REEL, R,,R *+,ete.

1} 2).

1. "REEL" is the pseudo-operation defining this type of card.

2. "Ri" represents a symbol up to eight characters in length; the
first three are not part of the reel identification, but specify whether
the tape is labeled or not and whether the tape is protected (ring out)
or unprotected. The remaining 5 characters agree with the identification

shown on the physical reel. Thus Ri may be:

25

PLB xxxxx protected, labelled
PUL e protected, unlabelled

NLB xxxxx unprotected, labelled

If an'h{'is null, a labelled, unprotected tape is assumed. An “Ri" must
be entered for each reel of the tape desired, even if only one reel is
used. All reels are labelled automatically by MCP., For further details,
the reader is referred to the MCP manual.

In general the programmer need not worry about punching the MCP
control cards, since the 7030 run request sheet is used by the operators
to punch the necessary "B" cards. These cards are placed in front of the
deck, which is then run. Local conventions are important in the use of
these cards and should be studied by the programmer interested in running
on the 7030,

Start Card. A "start card" must precede every IVY code, behind any
"%" or "B" cards. This card performs the following functions:

1, Erases the symbol table of the previous code, if any, and ini-
tializes IVY for a new code in such ways as setting base addresses for
loading to initial values, etc.

2+ ©Sets the print trigger on, which causes the contents of the
start card and all cards following it to be printed on-~line, until a
"print suppress" card is encountered (see page 30).

3« Defines the maximum number of formulas in one formula set, num-
bers of independent store~address expressions, references within formulas,

index registers, and mumbered remark symbols used by the code.

=26~

The format of the Staxrt Card is as follows:

Col. 1 Col. 2-T2

S | (N1), A(Ne), L(Nj), X(Nh), SYMB¢L1(N5), SYMB¢L2(N6),...

Here'Ni"represents a decimal number which cannot be symbolized,
and'SYMBﬁL{'represents any legal symbol (from one to six alphabetic char-
acters except the symbols A, L, or X). The "S" card cannot be followed
by a continuation card.

The fields on this card will now be explained, with page references,
where necessary, to indicate where further discussion of the concepts in-
troduced by consideration of this card may be found:

Te (N1): N1 is the maximum number of formulas which will appear
in any formula set of the IVY code introduced by the "S" card. Briefly,
IVY codes are always divided into one or more subsets called formula
sets, and each formuls set contains one or more subdivisions called for-
mulas., Within a formula set, the code can flow at will among the formu-
las, but direct branching between a formuls in one formula set and a for-
mula in another set 1s not allowed. Formula sets are to be thought of
as almost independent packages of a code, to be entered from another
formula set only by branching to the start of the set, and not to one of
its formulas. (For further discussion, see page 114)., Thus, if M, is
the number of formulas in the first formula set, M2 in the second set,
eee» M, in the nth set, then N, = max (M], 2,°'°,MN). This entry
causes a table to be constructed,(N1 + 25)words in length, to aid the

compiler in assigning addresses to branches between formulas. The

minimum value N1 can have is O,

-27=

2. A(Ng): The symbol "A" is always reserved for the "store address"”
symbol, even if no "store address" expressions are used in a code. If no
"store address" expressions are used, the entry A(0) must still be present
on the "S8" card. If, however, the coder wishes to use "store address" ex-
pressions (which areusually helpful when working with multi-dimensional

" specifies the maximum number of independent "store address"

arrays), "N2
expressions in any formula of the program. (For further enlightenment
see pages T75-78.) This entry causes a table, N2 words in length, to be
constructed for the use of the compiler in setting up "store address" in-
structions in mechine language.

3, L(Nj): The symbol "L" is always reserved for internal branch
references (L1, 12,...) within formulas. If no internal branch references
= 0,and L(0) must occur on the "S" card. N, is the maximum

3 5

number of internal references within formulas, i.e., if J1 is the number

are used, N

of references in the first formula, J2 in the second,.e., JM in the Mth,
then N5 = max (J1, Tpseees JM). (For discussion of "L" entries see
pages 97-102.) This entry causes a ta.'ble(N5 + 25)in length to be con-
structed, to aid the compiler in assigning addresses to branches referring
to "L" entries. N5 can be at most 512.

L, X(Nu): The symbol "X" is always reserved for index registers.
"Nh" specifies the number of index registers used in the program. The
first Nk consecutive index registers, X1, X2,..., XN& must be used, not

any combination of Nh different registers. Regardless of the machine

used, IVY index registers always modify by addition, or appear to do so;

=28-

furthermore, IVY index registers are always positive, and even on Stretch
(except in longhand coding) must not take on negative values. This entry
causes a table Nu in length to be constructed to aid the compiler in simu-
lating extra index registers, if Nu happens to be larger than the number
of index registers available on the particular computer, and a second
table, also Nl+ in length, for aid in the computation of index branches.

Nl+ must be at least 1 but may be no larger than 256, For more discussion
on index registers see pages 89-93.

5 SYMB¢L1(N5): The remaining entries on the "S" card are option-
al (the first four listed above are mandatory) and specify numbered sym-
bols which may be assigned only to remark blocks or calling sequence
blocks. The symbol specified may be any symbol consisting of from one
to six alphabetic characters except the symbols A, X, and L, which, as
noted above, are always reserved for special purposes. "N5" is the num-
ber of symbols which will begin with the alphabetic characters and end
with one of the numbers 1, 2,..., N5:
Each of the blocks corresponding to these numbered symbols must be

SYMBPL1, SYMBPL2,..., symayﬁm5.

loaded separately on "R" or "K" cards (see below). A group of numbered
symbols beginning with the same alphabetic symbol must all address the
same type of information; that is, the symbols of a numbered block R,
namely R1, R2,.s., RN,must all address either remarks or calling sequence
information, but not both. The number of numbered symbols allowed is
obviously restricted to the remaining columns of the "S" card, since no

continuation is allowed.

-29-

The discussion of the "S" card is now complete. Again it must be
emphasized that the "S" card must not be followed by a continuation card,
i.e., another "S" card or a card with the first column blank. All neces-
sary information must be included on the one "S" card. The reader should
also note that much of the information discussed above will be discussed
in detail later. As a man once remarked when presented with the IVY sys-
tem, "The 'S' card is supposed to be the first card in your code, but it
will probably be the last one you write down on the coding sheet.” The
lesson here is clear: although an IVY deck must be ordered in a specific
manner, quite often the order of coding will not correspond to the order
of the deck, or to the order of treatment of topics in this manual.

Print cards. These cards, the purpose of which is to turn the
print trigger on or off, may occur anywhere in an IVY code. If the
print trigger is on, all cards will be printed until it is turned off,
thus allowing the coder to obtain a listing of all or part of this pro-
gram. A card with "P" in column 1, and column 2 blank, turns the print
trigger on; "S" in column 2 (for "suppress") turns the trigger off. Re-
call, as remarked on page 26, that an "S" card also turns the print trig-
ger on. Thus, once a listing is obtained, on subsequent runs a "PS"
card should follow the "S" card to suppress any unnecessary listing.

The listing will appear off-line unless key 35 is down (7090) or binary
key 63 is down (7030).

Comment cards. The "comment cards," which may occur anywhere

whatsoever in an IVY deck, are announced by a "C" punch in column 1.

These cards are ignored by IVY for assembly purposes, except that their
contents will be printed if the print trigger is on. Any printable com-
ment may be punched on a "C" card; generally, of course, these comments
are of an informational nature, describing the subsequent code for the
benefit of anyone (including the coder) who might want to read it., "C"
cards may be followed by any number of contimuation cards with a "C" or
"blank" in column 1,

Definition cards. After the "B," "¥," and "S" cards the "defini-

tion cards" must occur. These cards, which have a "D" punch in column 1,
are used to define symbols for data blocks, parameters, and formula sets.
Formula names, however, should not be defined on "D" cards; these symbols
are defined by their occurrence on "I" or "L" cards, described in Chap-
ters 4 and 5 and in Appendices 2 and 3. Recall the distinction between
formulas and formula sets, discussed previously on page 28, A detailed
description of the allowed formats on "D" cards is given in Chapter 3,
pages 43-57 . "D" cards may be followed by any number of continuation
cards with a "D" or "blank" in column 1.

Remark cards. '"Remark cards" provide a means for entering BCD in-

formation into core for printing comments on a listing, punching comments
on cards, or for use as format statements for printing. Ordinarily re-
merk cards should occur next after "D" cards in an IVY deck. Symbols may
be defined on remark cards, remark blocks may be loaded, or a block of
fixed length may be set up so that a remark may be constructed in it

later using the character manipulation program described in Chapter 6,

pages 154-156. Remark blocks may be named with numbered symbols entered
on the "S8" card (page 29) or with ordinary alphabetic symbols which
have not been previously defined otherwise. A description of the for-
mat of remark cards occurs in Chapter 3, pages 61-64 « Remarks for use
as format statements are described in Chapter 6, pages 132-145. The first
card of a remark must have an "R" punch in column 1, because it is on
this card that the symbol is defined; continuation cards, if any, are
allowed, and must have a "blank" in column 1.

Calling sequence cards. 'Calling sequence cards"” are used for

entering calling sequence information into core; calling sequence infor-
mation may also be entered directly on instruction cards., However, the
option of using calling sequence cards is allowed because of the flexi-
bility of such a system: like remarks,calling sequence blocks can be
defined without being loaded, so that values for them can be computed
later in the code (see pages 182-184) for examples. Variable calling se-
quences, or calling sequences whose length depends on a parameter, may
be defined; and a previously defined and loaded calling sequence can
easily be altered. None of these operations is possible with calling
sequences which occur on instruction cards. Discussions of the usage

of calling sequences occur throughout this manual, e.g., Chapter 5,
pages 105-110, and Chapter 8, pages 176-182. Calling sequences for parti-
cular IVY subroutines are discussed in Chapter 6. The actual format of
calling sequence cards is described in Chapter 3, pages 64-67, As

with remark cards, continuations of calling sequence cards must contain

-32-

"ylank" in column 1; the first card, on which the symbol of the block
appears, must have a "K" punch in column 1, Unlike remark cards, however,
the symbol on a "K" card must have been previously defined, i.e., entered
into the symbol table; that is, it must be either a numbered syﬁbol defined
by an entry on the "S" card, or an alphabetic symbol defined by its appear-
ance on a "D" card. (See Chapter 3, pages 47-48,)

Instructions to operator card. Cards of this type contain an "@" in

column 1 and may not be followed by continuation cards. The "@" card, in
columns 1 to 72, may contain any comment, interpreted as an instruction to
the operator. When an "@" card is encountered by the loading program, it
causes the following to take place:

1. The contents of the"§" card are printed on-line (using the prin-
ter on the IBM 7090 and machines without a typewriter, using
the typewriter on machines which have one attached, such as the
IBM 7030).

2. The machine then stops or waits, and a gong is sounded on ma-
chines which have one attached.,

3. The operator presumably reads the instructions, carries them
out, and presses an appropriate button ("start" on the 7090-
type machines, "console signal" on the T7030), and IVY regains
control and proceeds,

If the coder's program currently has control, the same functions may
be performed by using the IVY subroutine "S@P", described in Chapter 6,
pages 151=-152.

Tape control card. The purpose of the 'tape control card" is to allow

the programmer to read or write information on a binary, high- or low-density
tape under control of the loading program. The same thing may also be done

internally by using the IVY subroutine'%TP}'described in Chapter 6, pages
121-126,

“33w

A tape control card has a "P" punch in column 1, and continuation cards,
if any, must have a “"blank" in column 1. The "T" card contains a calling
sequence to $TP, consisting of various items of information separated by
colons. These items are as follows ("H" is a hexadecimal digit, 1 <HLC

on the 7090, 1 < H< F on the 7030):

ITEM MEANING
PHDH set tape "H" to high density
#LDH set tape "H" to low density
$RWH rewind tape "H"
PEFH write end-of-file on tape "H"
PULH rewind and unload tape 'H"
$ETH write end-of-tape record, tape "H"
#BBH, P backspace tepe "H" through
"P" records
#BFH, P backspace tape "H" through
"pP" files
#FBH, P forward space tape "H" through
"pP" records
¢FFH, P forward space tape "H" through
"p" files
FRDH, AD(gWA) read from tape "H" the record with
+P: AE(W) ID = C(AD(#WA)+P) into block AE
$WRH,AD($WA) write a record on tape "H" with
+P:AE($W) ID=C(AD(@WA)+P from block AE
#RDH,AD($WA) +P last entry only: compare ID of

current record on tape "H" with
contents of AD(gwWA)+P. "gcsi"
is set to O if not equal, 1 if
equal.

3=

In all of the above, "P" stands for "parameter algebra," which is
explained at the beginning of Chapter 3, Other notation is explained in
Chapter 5, pages 105-110, and the calling sequence for '$TF'is fully dis-
cussed in Chapter 6, pages 122-125., Page 120 contains a table showing cor-
respondence between the tape number "H" as used above and tape and channel
numbers on the 7090 and 7030. Below is an example of a "T" card and its
continuation,which writes two blocks on tape, and reads in a third from
another tape:

T | $RW3: $WR3, GE(@WA)+1 : SN(W) : gWR3,AX($WA) +3: ST(FW) : BRW3:

|#RW2: gFB2, 4: gRD2, FNP(WA) +GE: FRNB(#W) :

Assembly card. The "assembly card," which has an "A" punch in

column 1, and for which no continuations are permitted, is required to
be present in an IVY program. Once this card is encountered it is
assumed that all symbols (except those for formulas) have been defined,
on "D," "S," and "R" cards. The purpose of the "A" card is to cause
the instruction and/or longhand cards which follow it to be compressed
and written in a specified file of a specified tape, or to read in and
assemble instruction and/or longhand cards which have been previously

written by an "A"

card, Note that the "A" card differs quite markedly
from the "T" card: The "T" card is used for writing or reading data;
the "A" card is used to control assembly, and writes only unconverted
instructions, and when reading, converts simultaneously into machine

language. The use of "T" cards is optional, whereas "A" cards are re-

quired in order for the assembly to proceed properly. The two formats

_55-

for "A" cards are as follows:

1. preceding code: The card

A|@#WRN,F
causes the instructions on cards following to be written
on tape "N," where "N" is a hexadecimal digit (1 < N<C
or F; see "T" cards), in the file number specified vy "F,"
a decimal number. If N = O, a special systems tape is
used, equivalent to N = A,

2. following code: The card

A|#RDN,F

causes the unconverted code in file "F" of tape "N" to
be read into core and converted to machine language.

An "A" card of type "1" will write instructions on tape until
another "A" card or an "X" card (see below, pages 39-40) is encountered.
The smallest unit of code which may be written using "A" cards is a
formula set. In general it is best to write a long code in as many
files as possible, one formula set per file, since, if several files
contain part of the code which have been debugged, it is not necessary
to read in the cards agein for éhese particular files. One need only re-
write and re-load the undebugged portions of the code; the rest may be
read from tape using A|#RD cards. A completely debugged code may be
read and assembled in its entirety from tape. Note that in re-writing
a portion of the code which occurs in a certain file, it cannot be re-
written in the same file (unless it occurs in the last file on tape)
without destroying some subsequent information; it must be rewritten

in a file beyond the last previously written file. Tapes written under

-36-

the control of the "A" card may not be used interchangeably among machines
using the same types of tape units (e.g., the 7090 and 7030) since they
contain partially assembled code. Files of a tape may also be read and

assembled under progrem control, using the IVY subroutine "ﬁAP," de-
scribed in Chapter 6, pages 119-120.

Instruction cards. '"Instruction cards," which have an "I" in

column 1 and may be followed by any number of continuation cards with "I"
or “blank" in column 1, are used to load IVY algebraic code. The format
of these cards, and the IVY algebraic language itself, are discussed in
Chapters 4 and 5. "I" cards must be preceded by "A" cards, writing units
of the code containing one or more formula sets on tape, and may be fol-
lowed by other "A" cards or "X" cards, as described below, pages 119-120,
All symbols for data, remarks, etc., must have been defined by the time
the first instruction block is assembled, regardless of whether or not
the block in question refers to these symbols, since instructions are
loaded into core immediately above the symbol table; if the table has not
been completed, subsequently defined symbols will destroy the first in-
structions of the code. Blocks of "I" cards must not contain "D," "R,"
"K," "?," "@," or "E" cards; in other words, all cards containing infor-
mation not pertinent to instructions and their assembly must have bheen
loaded before any instruction blocks, or must be loaded after the first
"x" card.

Longhand cards. These cards, which have an "L" punch in column 1

and may be followed by any number of continuation cards with "L" or

"blank" in column 1, are used for the entry of longhand instructions for
a particular machine, as opposed to the "I" cards which enter the alge-
braic instructions valid on all machines. The formats of "L" cards are
described in the appendices appropriate to the machines under considera-

tion.

Binary deck cards. These cards, identified by an "F" in column

1, are used to load a relocatable column binary deck. The relocatable
cards must, of course, contain instructions in the set of the particular
machine being used, and must be in the proper relocatable format for

that machine. The chief purpose of the "F" card is to allow a programmer

to load a previously coded subroutine, not a complete code. The format

of the "F: card is as follows:

F|:AD: #B,M: $A, L

"AD" is a symbol for the formula set represented by the
binary deck; "M" is the number of words (if any) reserved
for data before the subroutine, in decimal; and "L" is the
number of words (if any) reserved for deta after the sub-
routine, in decimal. The purpose of the latter two entries
is to take care that space is allowed for data blocks used
by the subroutine for which no cards are loaded, such as,
for instance, blocks defined by use of "BSS" or ¥BES" in
the SAP and FAP systems., This is not necessary ordinarily
on the 7030, since space for blocks defined by "DR" or
"DRZ" is reserved by the use of special conventions on

the binary cards.

Continuation cards are obviously not appropriaste for "F"
cards: IVY assumes that the cards following the "F" card are relocat-
able binary cards with 7 and 9 punches in column 1, and that the 1st
non-relocatable card following is an IVY card with a non-blank punch

in column 1.

-38-

The "F" card has been included primarily as a feature intended to
simplify the transition from other coding systems to IVY; thus, subrou-
tines available in relocatable form can be loaded in this manner until
such time as they become available in IVY language. In no sense is IVY
to be considered merely a relocatable loader: IVY recognizes only relo-
catable cards, and none of the other types of the large class of cards
handled by the FORTRAN BSS loader.

It is the programmer's responsibility, then, to set up calling
sequences to these relocatable routines correctly in the IVY language.
Normally such subroutines should be self-contained, i.e., they should
not refer to other subroutines, and should carry with them their own data
and erasable blocks. If this is not done, then the programmer must exer-
cise extreme care in the use of the subroutine. FPRTRAN, which can be
used to produce relocatable routines which refer to outside data blocks
and to other subroutines, stores data backwards in memory, at the time
of this writing, while IVY stores data forwards. This difference should
always be borne in mind when using a routine produced by F@PRTRAN.

Execute card. The "execute card,"” with an "X" punch in column 1,

is the IVY transition card; its detection causes IVY to transfer control

to the programmer's code. Its format is as follows:

X|AD
where "AD" is the symbol for a formula set which must have
been converted by means of an "A" card (or the routine 'BAP")
before the '"X" card is encountered., If columns 2-72 of the
"X" card are blank, it is assumed that the programmer has
entered the loading program "$ILD" from his code, and control

-39~

is returned to the first instruction following the pro-
gram's "$ID" calling sequence. An "X" card with columns
2~72 blank is illegal if the programmer has not entered
'gLﬂ'from his code. Normally;"$Lﬁ'is entered to read
data from "E" cards, described below,

Enter data cards. These cards, with an "E" punch in column 1,

may be followed by any number of continuation cards marked by "E" or
"blank"” in column 1, and are used to enter data in blocks which have
been previously defined on "D" cards. Normally "E" cards occur after
the program's first "X" card,which transfers control to a specified for-
mula set;"$LD"is then entered to read the "E" cards, which must be
followed by an "X" card with blanks in columns 2-72 to return control to
the 'BID"calling sequence. The format for "E" cards is described in
Chapter 3, pages 57-59.

*Summary. It has been the intention of this chapter to describe
the various types of cards used in an IVY deck, and as much as possible
the order of discussion of these cards has been the order of an IVY deck
at loading time. When possible, the card format has been described; in
many cases, however, the reader has been referred ahead to those por-
tions of the manual which describe the format of the card in question
in more detail than can be attempted this early. In setting up an IVY
deck for assembly, the progremmer should keep one idea paramount: that
IVY is a load-and-go, one pass system, meaning that every card is ex-
amined once and only once, Therefore, the order of loading is somewhat
restricted in that symbols must be defined prior to their occurrence in
code and calling sequences, making it necessary to place the "s," "D,"
and "R" cards in that order at the beginning of the deck. All symbols
must be defined, i.e., entered in the symbol table, before any "K," "I,"
"L," or "F" cards occur, since the information loaded from these cards
occupies space immediately above the symbol table, and any subsequent
attempts to define symbols (treated and detected as errors) would des-
troy part of the information loaded by these cards.

*Because of the distinction between formula sets and formulas,
as sets and subsets of a program, formula set names must be defined on
"D" cards, whereas formula names are defined by their appearance on "I"or
"L" cards and should not be defined on "D" cards. Thus, for instance,

subroutines referred to by a number of formula sets should be defined
as formula sets, since formulas can refer only to formula sets or to
other formulas within the same set. All "I" or "L" cards must be writ-
ten on tape and assembled using "A" cards, the usual procedure being
to write each formula set in a separate file. This makes it possible
to avoid reloading the entire deck for a second assembly, when none,
or only a few, of the formula sets contain errors.

*¥Finally, after assembly of one or more formula sets, the "X"
card transfers control to one of these sets and execution of the coder's
program begins. At any time the program can re-enter '$ID"to load new
data from "E" cards and regain control from an "X" card with columns
2-72 blank. The program also may use other IVY subroutines, such as
"WAP"to assemble a new formula set, and various input-output routines
for printing, punching, and the manipulation of tapes.

*Table I gives a summary of card types for quick reference, giv-
ing page numbers of descriptions and other useful information.

41

TABIE I

Table of Card Types

FORMAT ON CONTINUATION

COL. 1 PAGES ALLOWED? PURPOSE

* 22-23 NO Identification of off-line output

B 23-26 NO Assignment of I/O on 7030

S 26-30 NO Start, define essential quantities

P 30 NO Set print trigger on or off

D 43-57 Yes "D" or '"blank" Define and/or load symbols

R 61-64 Yes "blank" only Define and/or load remarks

K 64-67 Yes "blank" only Define and/or load calling se-
gquence blocks

@ 33 NO Instructions to operator

T 33-35 Yes "blank" only Tape manipulation under loader
control

A 35-37 NO Write or read and assemble in-
structions

I 68-117 Yes "I" or "blank" Load algebraic instructions

L Appendices 2,3 Yes "L" or "blank" Load longhand instructions

F 38-39 NO Load relocatable binary deck

X 39-40 NO Transfer control to program

E 57-59 Yes "E" or "blank" ILoad data

C 30=31 Yes "C" or "blank" Corment

42

CHAPTER 3

DEFINITION AND LOADING OF DATA, REMARKS, AND

CALLING SEQUENCE BLOCKS

Definition and loading of parameters. A parameter, as referred to

throughout this manual, is defined as a fixed point integer, the value of
which remains constant throughout an assembly, and which is used to define
such things as the dimensions of a block, conditions on whether assembly
or loading of a block is to take place, and so on. The value of a param-
eter may, of course, vary from one assembly to another, but once defined
for a given assembly, it must remain constant throughout the assembly.
Since the notion of a parameter is the foundation of the whole IVY system,
and the algebra of parameters is a cornerstone, the definition of param-
eters, followed by a discussion of parameter algebra, shall occupy us
first in this chapter.

Since, as a rule, the entire assembly depends on the values of
parameters, these quantities should be defined on the first "D" card or
cards after the "S8" card. In different assemblies these "parameter
cards" can be changed for another set in order to change the dimensions

of various arrays, change some of the conditional assembly statements,

~l 3

etc. Some simple parameter definitions are illustrated below:
D|GE = 2, AX = 15, BS(2) = 1,3,TH = 6, FINI(BS2) = 5, 6, 12

The first two symbols are defined as single parameters, the numbers 2
and 15. BS is defined as two parameters 1 and 3. When any block,
parameter or not, is defined as being a vector or array N in length, N
numbers must follow to load the block completely. More about this point
later. TH is then singly defined, and finally FINT is deflned as having
length BS2, which is 3, and three numbers are loaded. Note that in the
case of the parameters and data, the nth element of an array AD is ad-
dressed by writing ADn, where n must be a number and cannot be symbol-
ized. However, the first element of a block may be addressed by using
the symbol with no number, so that, using the above example, one may call
on the number 2 by writing GE instead of GE1, though the latter is also
allowed. Similarly the symbol BS alone would address the number 1, the
symbol FINT alone would address the number 5.

Dimensions of multi-dimensional blocks can be symbolized by param-
eters defined in the above manner, or may be defined by fixed point num-
bers when dimensions never vary, or by parameter algebra, discussed be-
low. New parameters may also be defined in terms of previous parsmeters,
numbers, or parameter algebra involving previously defined parameters.
Examples of this appear in the next section.

Parameter algebra. Parameter algebra is defined as fixed point

integer algebra free of parentheses. The operations in this algebra, as

Ll

in IVY "machine algebra" discussed in Chapter 4, take place in sequence

from left to right, ummodified by parentheses. Examples of this alge-

bra occur below, after a discussion of allowed operands and operations

for this algebra.

The allowed operands in parameter algebra are:

1. Symbols which have been previously defined as fixed point in-

teger parameters, e.g., GE, AX, and TH in the above example.

2. Symbols with a number, meaning the nth element of a previously

defined fixed point integer parameter, e.g., BS2, FINT3 in the above

example.

3. Literals, i.e., fixed point integers not symbolized, e.g., 2,

251, 3, 17, 23.

The allowed operations in parameter algebra are:

add

subtract

multiply

divide and truncate result to integer

take absolute value of the preceding

take negative absolute value of the preceding
change sign of preceding

if result of preceding calculation is
non-zero, set to 1

if result of preceding calculation is
zero, set to 1; otherwise, set to zero.

Some examples of parameter algebra, involving the parameters

45~

defined in the example in the previous section, are as follows:

EXAMPLE RESULT

TH + 3 9

AX + GE¥BS2 51 (multiplication by BS2 times AC+GE:
operations from left to right)

AX/TH+2 4 (result of division is 2)

AX+BS2/TH 3

-2¥TH+AX. gU 1

-2¥TH+AX . $V 0

FINTZ*FINT-AX*@ =45

TH-AX+§ 9

Examples of definition of new parameters using parameter algebra involv-

ing previously defined parameters:
D | AMP=GE~AX*BS2,NIT=AMP+3+#, PRT(GE+1) = AX¥TH, O, FINT2-BS2/GE,

Thus we note that the value of a parameter, as well as the dimensions of
a block containing more than one parameter, can be defined by using
parameter algebra involving previously defined parameters. Other ex-
amples of parameter algebra will occur in examples following treatment
of the definition and loading of data and remark blocks.

The definition of symbols and loading of data. As remarked in

Chapter 2, the definition of symbols (simply by their occurrence) and
the loading of data may both be accomplished on "D" cards. One example

of both symbol definition and loading is the case of parameters dis-

cussed in the previous section. We now come to the section covering

-46-

the definition of other symbols without any loading being associated, as
well as the definition of data blocks whose length may depend on pre-
viously defined parameters, and finally, the loading of these data blocks,
which may occur from "D" or "E" cards. Data blocks may, of course, be
left empty, to be filled by results calculated in the programmer's code.
Entries on "D" and "E" cards are separated by commas. Since con-
tinuation cards are allowed for both "D" and "E" cards, an entry may be
continued from one card to the next; however, certain rules must be ob~

served in this continuation:

1. Symbols and literals (i.e., numbers) cannot be continued
from one card to the next, but must be complete on one
card.

2. Entries within parentheses may not be continued from one
card to the next, but must be complete on one card, in-
cluding the right parenthesis.

For the moment, these two simple rules will suffice. Note that param-
eter algebra may be continued from one card to the next, providing that
symbols and literals are not split, and that the algebra is not within

parentheses,

Symbol definition. A symbolthich occurs by itself between commas

on a "D" card is placed in the symbol table, and thus defined. No address
or other information is attached to the symbol table entry. It is in
this manner that the names of formula sets and non-numbered symbols for
calling sequence blocks must be defined. Example:

D|AGM, TDMT, L#GIC, FSA,FSB, FSC,

As was remarked on pagel19, symbols consisting of a single

47~

alphabetic character need not be defined in this manner, since IVY
always contains a table of the single character symbols.

Array definition. Arrays are defined on a "D" card by the ap-

pearance hetween commas of the symbol for the array followed by one or
more (up to fifteen) parameter algebra expressions for the dimensions,
enclosed in parentheses and separated by commas. No data are loaded for
a block defined in this manner; however, an address is assigned and
space is set aside for the array, which is now tagged as "data" in the
symbol table. Example (using parameters defined in earlier examples in
this chapter):

D |AVECT(NTT), BMULT(3,GE+}, 2¥TH), CVEC(5), DMUL(2,5,GE),
In this example we note that the dimensions of an array can be defined
by symbols, literals, or parameter algebra. The advantage of being able
to symbolize the dimensions of an array is that by defining parameters
properly, an array can always be assembled with the exact dimensions
needed in a particular run. FORTRAN and similar systems do not allow
array dimensions to be symbolized, and hence the programmer must allow
space for the maximum size of an array, sometimes leading to storage
problems, since usually all arrays do not simultaneously assume maximum
size: one array may be smaller when another is larger. In IVY no such
problem exists. By symbolizing dimensions, array sizes can be tailored
to fit the particular input being used. In examining the above example,
and looking back in the chapter to the examples on parameters, we see

that AVECT is a vector 36 numbers long, BMUIT is a 3 X 3 X 12 array,

CVEC is a vector of length 5, DMUL is an array 2 X 5 X 2 long.
In the event that one or more of the expressions for the dimen-~
sions of an array is zero, the array has length zero. A block legally

defined in this manner is called a suppressed block. A block may be

suppressed, for instance, when it is not being used at all in a particu-
lar assembly. When this is done, no error indication is given, and the
assembly proceeds, replacing references to the block with references to
the location of zero, and suppressing any ''store” references to the
block. The assumption is that since the block is suppressed, the portion
of the code containing references to it will not be executed anyhow, or
that replacement of the symbol by the address of zero is acceptable. OF
course, in subseqpent runs the coder may re-define the parameters used
in computing dimenslions of the block so that it is no longer suppressed.

If one or more of the expressions for the dimensions of an array
is negative, an error indication is given, since obviously an array can-
not have negative length or a negative dimension. Any references to
such a data block in the code will be replaced by transfers which return
control to IVY.

loading of data on "D" cards. In addition to defining blocks as

described above, loading may also be specified on "D" cards, by following
the symbol and its dimensions, if any, with an equal sign and a number of
expressions which load the block completely. These expressions are sep-

arated by commas. In the section on parameters, we have seen a number of

exanmples of this, for instance:

-49-

D|GE=2, AX=15, BS(2) = 1,3, TH=6, FINT(BS2)=5, 6, 12

Here the symbols are defined by their occurrence and then loaded with the
number or numbers to the right of the equal sign, in this case fixed point

integers. We have also noted that symbols for fixed point quentities can

be loaded using parameter algebra.

Besides fixed point numbers and parameter algebrs, an array can be
defined using a variety of expressions. The general case can be symbol~-

ized as follows:
SYMBPL(P,, Pyyeee,Py) = Qp, Qypeee, @

where'P{'represents parameter algebra for the ith dimension, and the "Qi"
are expressions which cause the block to be loaded completely. The'R."may
be any of the following expressions:

1. A fixed point integer, that is, a string of decimal digits,
preceded, if desired, by a sign, and the value of which must
be less than 227 on the 7090, 258 on the 7030. E.G.: 1265,
12, -=15792132

2. Parameter algebra, that is, parentheses-free algebrs involv-
ing fixed point literals and symbols for fixed point numbers.

3. Octal fixed point integers, defined by prefixing an octal
integer with a "B" in parentheses. Once a symbol has
been lcaded by an expression of this type it can appear in
e parameter algebra expression. Octal numbers as such can-
not appear in parameter algebra because this algebra must
be parentheses free., Octal numbers are restricted to the
same magnitudes as fixed point numbers, given above. Once
the "B" occurs. all numbers thereafter for the same array
are considered octal until overruled by some other entry.
Example:

D|XPL(2)=(B)77653.-62713, RST(3)=256,-7212,(B)1371,FNP=XP12+769

-50-

In this case 77653, -62713, and 1371 are octal. 256,-7212,
and 769 are decimal.

Boolean words, defined by prefixing an unsigned octal number
with a "W" in parentheses. A Boolean word is used in logi-
cal or Boolean arithmetic and may fill the entjre machine
word; ~thus a Boolean word must be less than 23% on the 7090
and 26h on the 7030. Boolean words cannot be used in param-
eter algebra, but only in the machine algebra described in
Chapter 4 (see pages 93-96). The prefix "W" operates in the
same manner as "B", that is, all numbers entered thereafter
for the same array are considered Boolean until overruled by
some other entry. Example:

D |AXX(3)=(W)457620001 713, 7625313, 963, AYX(2)=(B)76632, (W)75931,

5.

In the above, 457620001713 and 762313 are Boolean, while 963
is fixed point, because it contains a digit greater than 7.
In the loading of AYX we see the "(W)" overruling the "(B)"
on the first entry. Note that Boolean numbers are always un-
signed.

Fixed point decimal numbers may also be entered by prefixing
them with "A" in parentheses, in the case where a "B" or "W"
is operative and the fixed point number does not contain a
digit greater than 7. Like the latter, "A" holds for the
same array until overruled. Example:

D|AABC(3) = (B)T70707, 17231, (A)26513
70707 and 17231 are octal numbers and 26513 is decimal.

Floating point numbers may be entered using the following se-
quence of characters: a sign (optional), a string of from

1 to 16 decimal digits containing a decimal point, followed
by another sign and a fixed point number representing the ex-
ponent (optional). By "exponent" is meant the power of ten
by which the expression is to be multiplied. For example:

D|AACCD(2,2) = 3.1415926535, -2.742653-T7, 500.263+12, -21.732,

All the numbers above are legal floating point numbers. Floatl
point numbers N are restricted to approximately 10° < N< 10
on the 7090, 10"597 < N < 10397 on the 7030.

7. Zeroes may be inserted by prefixing a parameter algebra ex-

pression with "Z" in parentheses. The number of zeros

-51-

specified by the algebraic expression is entered. If no
parameter algebra is given, the remainder of the block is
filled with zeros. For example:

D |ACDX(20,30)=2.7123, 5.7561, (Z), ARPX(NTT) = (Z)NTT-3, 5.23, 6.51, T.32

Two numbers are entered in "ACDX" and the remainder of the block
is set to zero. All but the last three locations of "ARPX" are
set to zero, then the remaining three non-zero numbers are
loaded. In both cases, loading is complete, as required.

8. A given number of locations may be skipped (without being
set to zero) by the entry "S" in parentheses followed by
a parameter algebra expression. The "skip" feature is written
in the same manner as the "zero" feature. For example:

D|ACDY(NTT) = 3, 6, 12, (S), ACDA(21) = 2.0, (S) 19, 3.561,

9. A number, once entered, may be repeated a specified number
of times by following it with "R’ in parentheses and param-
eter algebra telling the number of repetitions desired.

As with "2" and "S," if no parameter algebra is given, or
ifthe result of the algebra is zero, the number is repeated
until the end of the block. For example:

D|ACDB(5) = 2.7653+6, (R), ACDC(NIT)=2.5617, 9.986301-10, (R)NIT-3,8.653,

In "ACDB", the entire block is filled with one number; however,
only a portion of "ACDC" is filled with the repeated number
9.986301-10. As always, loading is complete. The last N num-
bers loaded into a block may be repeated M times by the entry
"N(R)M" between commas, as illustrated below:

D(BBCX(25) = 3,2,1,5,4 (R) 5,6.513, ...

The numbers 3, 2, 1, 5 are entered six times; the last number
of the block is 6.513.

10. Any number of linear interpolants may be entered hetween
two floating point numbers by placing between them an "I"
in parentheses followed by parameter algebra specifying
the number of interpolants desired. Note that this entry
may be used only with floating point numbers. For example:

D|ACDD(626) = 1.0, (I) 623,625.0, 7.363-11,

-52a

The 623 interpolants 2.0, 3.0, ..., 624,0 are entered in "ACDD"
between the two numbers shown.

11. A block may be loaded with multiples of a fixed point
number by the entry of "M" in parentheses followed by
parameter algebra specifying the number for which mul-
tiples are desired. If the block has dimension "P,"
the multiples of a specified number "N" entered are:
0, N, 2N, 3N, ess, (P-1)N. Only the entry for mul-
tiples may occur if it occurs at all in the loading of
an array. Examples:

D |ACDXM(30)=(M)20, BMULXA(5)=(M)2, DMULXB(GE)=(M)5,
D |BMULTA(GE+1)=(M) 3, BMULTB(2%TH)=(M)GE+1,

The multiples defined by this example are the same as would be
obtained by writing

D|AcDXM(30) = 0,20,40,60,...,580, DMULXA(5)=0,2,4,6,8,etc.

This example computes what we shall call the index multiples of
the arrays ACDX, DMUL, and BMULT, which were defined in pre-
vious examples of this chapter. For further discussion see be-
low, page 54, and examples in Chapter 8, pages 168-169, By use of
the "(M)" entry one can also load the multiples of a number 1
plus a second number J. The entry"J(M)I" will enter the num-
bvers J, J+I, J+2¥I, J+3*I, etc., to the end of the block named.
Thus, for instance, one might enter the 476 consecutive numbers
25, 26, 27, ++e, 499,500 by the following entry:

D |CPDAL(426)=25(M)1,...

12. A group of floating point numbers all having the same ex-
ponent may be entered without writing the exponent more
than once, by preceding them with an "E" in parentheses
followed by the exponent, in fixed decimal representa-
tion (Parameter algebra is not allowed). For example,
the following two entries are equivalent:

D|HFNT(6)=3.512+6,-2.713+6,9.916+6,20.251+6,-3.3216+6,2.515+6,
D|BFNT(6)=(E)+6,3.512,-2.713,9.916,20.251,-3.3216,2.515,
The exponent specified by the "E" entry is effective until it is
overruled by a different "E" entry, a fixed point number, a

floating point number with an explicitly stated exponent, or the
definition of another symbol.

-53=-

The usage of index multiples. Before we continue our jaunt through

the jungle of "D" and "E" card notation, a brief aside on index multiples
is appropriate at this point, to ease any curiosity on the subject that
might have been aroused by paragraph 11 above.

Suppose we have an array "B," which has been defined with dimen-
sions I, J, K. (The multidimensional case can be generalized from this
treatment of the three-dimensional cace.) In IVY the first element of
this array will have indices (1,1,1). Most coding systems start indexing
with (0,0,0) because of the way computers are built; but VY, by an in-
ternal trick, causes all indexing to start with 1. Similarly the last
element of this array has indices (I,J,K). Now, suppose we wish to com-
pute the address of some random element (i,J),k) of the array. If "B" re-

presents the base address minus 1, the address of the (i,J,k) element is:
B+i+(j=1)I+(k-1)I1J

We see that to compute this address, three mmltiplications are necessary;
in general, for an n-dimensional array, Eg‘,élf-l-z-mul't'ip:L:i.ca‘c:i.ons are re-
quired to compute the address. However, multiplications can be avoided
altogether if we happen to have access to a table of the multiples of I
and of IJ. It is for this purpose that the 'M" entry is used on '"D"
cards: to set up tables of index multiples for all arrays where random

addressing is needed. The actual detajls of coding involving the use

of index multiples are covered in Chapter 8, pages 168-169,

~5h-

Other entries allowed on "D" cards. Besides defining symbols and

blocks, with the options of loading mentioned above, two other types of
entries are permitted on "D" cards: one to set up equivalent blocks, and
the second to skip certain definitions under parameter control.

1. Equivalent blocks are two blocks of dats which share the same

memory locations and have the same dimensions, but which have different
symbols. The use of equivalence is a means to conserve storage by using
the same area for a second array when the need for the first has disap-
peared. A second block is defined as equivalent to a previously defined
block by prefixing its symbol with an asterisk (*#) and following it with
an equal sign followed by the first symbol. The second symbol must not
have been previously defined. A symbol which has once appeared on the
left of an equivalence may not appear on the right of a subsequent equi-
valence statement; i.e., equivalence chains are not allowed. However,
two or more symbols may be defined as equivalent to the same symbol. The
example which follows is based on previous block definitions given as

examples in this chapter:

D |*ACDE=ACDD, *ACDF=GE,*ACDH=GE, *ACDG=BMULT

’

so that "ACDE" is a vector 626 in length, "ACDF" and "ACDH" both repre-
sent the same parameter "GE," and "ACDG" is a block with dimensions (3,
GE+1, 2%TH) sharing storage with "BMULT,"

2. The jump feature allows the programmer to skip certain defini-

tions of symbols, or to define a symbol in one of several ways, under

=55-

parameter control. This is effected by placing "$J" in parentheses, fol-

lowed by a parameter algebra expression and an equal sign with one of

eight conditions. If the condition is met, the definitions following the

comma are skipped until another "$J" is encountered between commas. The

generel format is as follows:

(BJ) P=C, ... (definitions) c.., $J, oe.

where "P" represents a parameter algebra expression and "C" represents one

of the conditions:

|Q

Z or O

NZ

2L

GZ

G

P

M

Jump
Jump
Jump
Jump
Jump
Jump
Jump

Jump

CONDITION

if

if

it

if

ir

if

if

if

expression
expression
expression
expression
expression
expression
expression

expression

is

is

is

is

is

is

is

is

zero
non-zero

less than zero
zero or less
greater than zero
zero or greater
plus

minus

If the condition is met, the definitions following the commas are skipped

until the ",8J," is encountered.

tions are handled in a normal manner.

If the condition is not met, the defini-

For example:

D|(#J) GE-2=0, ACDH(5,7,11),*ACDL=BMULT, gJ,

D|(#J) 2¥TH-7=2G,ACDI(2%NTT,GE+1),8J, ($J)2*TH-7=12,

D|ACDJ(2¥TH-7, GE+1), #J,

~56=

Here we see that the definitions of "ACDH" and "ACDI" are skipped if GE
is equal to 2, and that the definition of "ACDJ" takes on one of two
forms depending on the value of "2*¥TH-7."

The loading of data on "E" cards. Data may also be loaded from "E"

cards, but one should bear in mind that all symbols appearing on "E" cards
must have been previously defined on "D" cards, and the dimensions of any
blocks loaded from "E" cards must also have been previously defined.

Thus on "E" cards only the symbol for the block can appear to the left of
an equal sign, since the dimensions are known. The expressions allowed
on the right of the equal sign are the same as those allowed on "D" cards.
For example, the following "E" card will load two blocks defined in ex-

amples of "D" cards earlier in this chapter:

E|BMULT = 2.56312-13, (I)25,9.6732153-2, (R)3, (S),CVEC=1.,2.,3.,k.,11.72,
Note that as on "D" cards, loading must be complete. The "(S)" in the
expression for "BMULT" guarantees this.

The "jump" feature is also allowed on "E" cards in order to skip
the loading of a certain block or to load it in one of two or more alter-
native ways. The "equivalence" feature is not allowed unless the symbol
to the left of the equal sign has been defined by its appearance on a "D"
card sans dimensions, since the "E" card is merely a loading card, and not
one on which symbols can be defined. In other words, no symbol can make
its first appearance on an "E" card. For example, the.entry "*TIMT=BMULT"
is permissible since "TIMT" has occurred on an earlier "D" card in this

chapter, without dimensions. '* BMULT=AVECT" is not legal since "BMULT"

=57=

has already been defined with dimensions and hence assigned a location

in core., "*ACDK=BMULT" is not legal since "ACDK" has not occurred at all
on a previous "D" card.

Double-stored data. An entry for loading double-stored data is per- -

mitted on "E" cards; this entry is not allowed on "D" cards. Double=-
stored data is date each word of which contains two numbers paired in
the single memory location. The high-order portion, called the quantity

1"

or simply "Q," can be a signed, fixed or floating point number. The low-
order portion, called the tag or "T," is an unsigned fixed-point integer
which must be less than 215. The exact length of the tag in bits can be
specified by parameter algebra. The IVY algebraic language has special
formats for handling double-stored data, discussed in Chapter 4, pages

79-80 . Double-stored data has many uses, the chief being in mesh-type
problems for solving differential equations. For instance, in boundary
value problems, the boundary points can be labeled with tags having dif-
ferent values from the tags at interior points. In hydrodynamics codes,

points corresponding to different substances can be identified by their

tags, and so on. The format for loading double-stored data is as follows:

SYMBAL(Q.P) = E;s EyreeesBy SYMBPL(T.P) = Fis FypeeesFy

where the "Q" signals that the "Q" portion of the block is to be loaded,
and "P" represents parameter algebra whose value gives the tag length in
bits. The "Ei" are expressions for fixed or floating point numbers which
completely load the block. "T" now signals that the tag portion is to be

loaded, "P" being the same expression for the length of the tag as

58

appeared in the first parentheses. The "Fi" are expressions for unsigned

fixed point integers which completely load the block. For example:
E|AVECT(Q. 3)=5.32132-2,4,71531-1, (I)NTT-3,2.1532+2, AVECT(T.3)=
E|(B)1,2,3,7,6,5,4,2,1,7,(R) ,BMULT(T.GE+2)=TH, TH+1 ,TH+2,15, 1k,

E|12, 3, 5, (8),

We thus note that AVECT is loaded with a tag 3 bits in length, and that
both the "Q" and "T" portions are loaded completely. "BMULT," a block
which has been loaded previously, is now defined to have a tag GE+2, or
k, bits long, and the tag portion is then loaded. This is possible only
when a block contains floating point numbers: +the block can be loaded
on a "D" or "E" card with floating point numbers without specifying "Q"
and the tag length, and the tag can then be loaded on "E" cards in the
normal way.

Summary. Before proceeding to the study of remark and calling se-
quence cards, a summary of the treatment of "D" and "E" cards is needed.
This summary, for review purposes as well as for quick reference, is

given in Table II.

COL. 1

TABLE II

SUMMARY OF ENTRIES ALLOWED ON "D" AND "E" CARDS

FORMATS AND EXPLANATION:

SYMB@L. ,SYMB@L, (I,, I ,...,I,), SYMBPL, = Q,
SYMB¢L£ (3, Jg, ., 5,) = ﬁf, Ea,..?,EL

1. "SYMB¢L1" is entered in symbol table.
2. "SYMBYL," is entered in symbol table, assigned

an addgess, and allotted I1 I2 cos IN words of core.

3. "SYMBPL," is entered in symbol table, assigned address,
and loéded with Q.

k. "syMB@L, " is handled as case 2 and also loaded. Load-
ing must be complete. "Q" and the "Ei" may be any
of the following:

a. Fixed point number (sign and decimal digits) or
parameter algebra.

b. Floating point number (sign, digits with decimal
point, * exp. if desired).

c. (B)N,, N_,eeeN_, N, etc., are octal fixed point
integers“until (B)“overruled.

d. (W)Ml’ M ,..eM., M, etc., are Boolean octal
words un®il (W} overruled.

e. (AL, Lysessly, Ly, etc., are fixed point decimal
integers“until’ (A)“overruled.

f. (Z)P insert P zeroes. "P" represents parameter
algebra, Proceed to end of block if P=0.

g. (R)P repeat last entry P times.
h. (8)P skip P words.
i. (I)P insert P interpolants between 2 fl. pt. numbers

J. (M)P insert multiples of P (0, P, 2P, 3P,4e..,)
to end of block.

k. (E)*N the following fl. pt. numbers all have ex-
ponent = +* N until overruled.

All names except remark names, numbered symbols and formula
names must be defined on "D" cards.

~60-

TABIE II (Continued)

COL. 1 FORMATS AND EXPLANATION

D *SYMB¢Li = SYMB¢LJ,($J) P=C,...definitions...%J

1. SYMBJL, equivalent to SYMBPL, providing SYMBPL; is defined
and was not defined by anothér "*" statement.

2, If parameter algebra "P" satisfies one of the conditions
“c* (Z or O, Nz, 1Z, GZ, 2L, ZG, P, M) definitions are
skipped.

P, Byyeee,Ppy SYMB¢L2(Q.P) = Q),Q,5 Q) SYM:B¢L3
12 Toseees T -

Used for loading previously defined blocks. ILoading must be
complete.

1. "P{'and'Qi"are any of the expressions under "L" above.
2. 'Ti"are unsigned fixed point numbers.

3, "Q.P" and "T.P" mean "quantity" and "tag" of DS number,
"P" = tag length in bits.

Jump and equivalence can also be used on "E" cards, equivalence
with some restrictions.

The definition and loading of remarks. Remarks are usually for one

of two purposes: first, to provide comments and headings for output list-
ings and cards; and second, to provide formet statements for printing,
punching, and microfilm output. In this section we will consider only re-
marks for comment purposes. Remarks for use as format statements are de-
scribed in Chapter 6, pages 132-1L45 By using "R" cards and their coutin-
uations, if necessary, remark blocks can be defined and/or loaded; the

"R" card for remarks is thus analogous in function to the "D" card for
data. However, no great parallel is found in the way these cards are

punched. An "R" card must always begin with a symbol. which is called the

-6 -

"name" of the remark. Only one name can appear on an 'R" card. If a re-
mark is too long to fit on a single card, it may be continued on the next
card providing the continustion card has a blank in column 1. (This
point was first made in Chapter 2.)

The general format of an "R" card is as follows:

1. "R" in column 1.

2. Symbol or name of remark. This may be any legal symbol or
mumbered symbol.

3. Optianal: after the symbol, a parameter algebra expression
in parentheses, The value of this expression is taken by
IVY to be the number of chgracters in the remark, so that
IVY will set aside this amount of space for the remark,

4, An equal sign, followed by any group of Hollerith charac-
ters, which may fill any number of cards. The number of
characters in the remark must not exceed the number defined
by the entry of "3" if this option is used.

5. In three consecutive columns, the characters $$g to signal the
end of the remark., ¢$$ need not appear if the remark is ter-
minated by the end of a card.

The remark as stored in core consists of all characters, taken in
order, from the first character to the right of the equal sign to the
last character to the left of $@¥. These characters will be printed if
the symbol of the remark is specified in a calling sequence to "$PR,"
the print routine (page 131). By using the characters g in two
consecutive columns in & remark, the remark may be printed on two or more
lines: the portion of the remark following ¢$ will be printed on the
next line below the portion preceding $¥. The characters $§ are not

printed. Examples of remark entries:

-62-

REMARK NOTES

R | RL =ABUNDANCES AND“ACTIVITIES @F IS@T@PESEFE 1, 2

R | REM(NTT*34GE) = g 3

R | R2 = THIS"IS"A"¢g TWg LINE REMARKEFS L

R | R3 (3627) = C@NSTRUCTED GRAPH FPLLEWSES “¢dd 5

R | REMB=BESSEL FUNCTIONS COMPUTED BY RECURSION FORMULA.” SEE”ANY TABIE"T0"V
| ERIFY"“ACCURACY. @#g 6

Notes:

1. The following conventions should be observed to make the coding
sheets appear unambiguous to the keypuncher: 'blank" is represented by
the carat """; n blanks are represented by the number "n" in a box: [A)
Alphabetic "I" must be written with bars or dotted ("i") to distinguish
it from numeric "1"; alphabetic "¢" is slashed to distinguish it from
numeric zero; and alphabetic "B" is slashed to distinguish it from num-
ber two.

2. Our first remark is an illustration of a simple heading, the
name of which is a numbered symbol presumably defined on the "S" card.

3. In this case, space is assigned for a remark having NTT*3+GE or
110 characters. No characters are loaded. It is presumed that a remark
will later be constructed in the space, for instance, by "gCM," the
character manipulation subroutine described in Chapter 6, pages 154=-156.

4, In R2 we see the $$ convention for printing a remark on two lines.
If printed, this remark will appear as follows:

THIS IS A
TW@ LINE REMARK

-63-

5. Space for 3627 characters is reserved. 27 of these are loaded,
namely, the comment and its $$ spacing control. Note that to avoid con-
fusion, the $¢ and g¥§ are separated by a blank. 3600 spaces remain in
a block; a 60 X 60 character graph could, for instance, be constructed
in the remaining portion of this remark block using "gcM."

6. An example of a remark which is continued onto a second card.

Note that the continuation card has a blank in column 1, as required.

The loading of calling sequence blocks. Calling sequence blocks,

for the use of subroutines, are loaded from "K" cards. As has been re-
marked previously, the symbol assigned to a calling sequence block must
have been previously defined, either by its occurrence on a "D" card or
by its occurrence in the naming of a numbered block on an "S" card. Con-
tinuations of a "K" card must have "blank' in column 1 since the symbol
of the block is assigned on the "K" card. The general format of a "K"

card is as follows:
K|SYMBPL(P) = (...calling sequence information...)

where, of course, the calling sequence information enclosed in paren-
theses may be continued onto subsequent cards if necessary. "SYMB@L" re-
presents any legal, previously defined symbol or numbered symbol., The
optional entry "(P)" is parameter algebra defining the length of the
calling sequence in machine words. Inside the parentheses to the right
of the equal sign may occur any number of calling sequence word entries,
separated by colons. The information in each entry between colons is

stored into one full word of the machine being used. The calling

.

sequence word entry, to be described shortly, allows for great flexibility
in constructing calling sequences. The IVY subroutines described in Chap-
ter 6 use only a portion of the available calling sequence words; however,
the full generality is available for those progremmers who wish to con-
struct their own subroutines and calling sequences.

A digression on notation. Certain notations are used in the IVY sys-

tem for addressing various quantities connected with the control word,
i.e., the word associated with a symbol in the symbol table which contains
the base address minus one and the count of the block having this particu-

lar symbol. These notations are as follows, where "AD" represents any

symbol, except IVY symbols starting with "g":

NOTATION QUANTITY GIVEN IN CALLING SEQUENCE

AD(gwW) control word of "AD"

AD(gwP) position of control word of "AD"

AD(@WA) control word address (base address
-1 of "AD")

AD(gwc) control word count of "AD"

Calling sequence word entries on "K" cards set up full words in the calling
sequence in the same format as control words. Thus, below we will speak
of the "$WA" or "gWC" portion of a calling seguence word, and it is hoped
that as the manual progresses, the reasons for this notation will become

more clear,

Calling sequence word entries. Calling sequences may contain any of

the following entries between colons:

-65-

1.

gXxX, where "XXX" represents one, two, or three alphanumeric

characters. The core BCD (octal) equivalent of these char-
acters, exclusive of the "g," is placed in the "gWC" portion
of the calling sequence word. A table of hollerith charac-
ters and their BCD octal equivalents follows:

TABLE III

HOLLERITH CHARACTERS AND OCTAL EQUIVALENTS

Character BCD Character BCD Charactexr BCD
0 60 H 30 X 67
1 01 I 31 Y 70
2 02 J 49 Z Tt
3 03 K 4o + 20
4 ok L L3 - 40
5 05 M Ly * 54
6 06 N 45 / 61
7 07 ¢ 46 = 13
8 10 P 47 ! 14
9 1 Q 50 . 33
A 21 R 51 : T2
B 22 S 62] 53
c 23 T 63 (Th
D ol 16} n) 34
E 25 \ 65 ’ T3
F 26 W 66 blank 00
G 27
2. AD(§W)+P, where "AD" represents any legal symbol, numbered

38.

or not, and "+P" represents parameter algebra. The control
word associated with "AD," as modified by parameter algebra,
is placed in the entire calling sequence word.

AD($WP), where "AD" represents any legal symbol, numbered
or not. The location of the control word of "AD" is placed
in the "gWA" portion of the calling sequence word.

AD(gWC)+P, where "AD" is the above and "+P" is any parameter
algebra. The count of the control word of "AD," as modified
by the parameter algebra, is placed in the "gWA" portion of
the calling sequence word.

66

|
|
c. AD($WA)+P. Same as "3b" except the address of the control
word of "AD" is used. P

d. AD(P), where "AD" is any legal non-numbered symbol and "P"
is parameter algebra. The contents of location AD(§WA)+P
are placed in the calling sequenqe word.

e. P, i.e., parameter algebra. The result of the algebra is

placed in the calling sequence word.
X

ha. An entry of type 1, followed by & comma and an entry of type
3a, 3b, or 3c is allowed. :

b. An entry of type 1 followed by afcomma and by an entry of
type 3d is allowed, providing the number addressed is fixed

point and less than 218, or by an entry of type 3e provid-
ing the result of the parameter dlgebra is less than 21°,

Chapter 6 is rife with examples of cailing sequences to the various
IVY subroutines. Only one example will be given here: suppose we wish

to enter "$TP," the tape program, internally. If we use the same calling

1
sequence covered in the example in Chapter 2 (page 35) on "T" cards, as-
signing it the name "TAPE" (which we presume has been defined by its pre-

l
vious occurrence on a "D" card), the "K" caﬁd calling sequence appears

as follows: ?
I

K TAPE=($RW5:$WR5,GE(¢WA)+1:SN($w):$w€3,Ax(¢WA)+3:ST($w):¢RW3:

$RW2: §FB2, 4 : gRD2, FNP($WA) +GE: FRNB(W))
i
Note that, as on "R" cards, the parameter algebra expressing the length

|
of the calling sequence is optional. If this algebra is given, the call-
b
ing sequence need not be completely filled,jgnd entries can be computed
by the programmer, if desired. Examples of ﬁhis technique appear in

|
Chapter 8, pages 182-18%. i

|
-67- i
|
|

i

CHAPTER k&

THE IVY ALGEBRAIC LANGUAGE

The IVY algebraic language, or machine algebra, is capable of han-
dling expressions in floating point, fixed point, Boolean, or index re-
gister algebra, as well as the simple parameter algebra already discussed
in Chapter 3. We will consider these types of algebra in succession,
with examples. Index branching will be covered along with index algebra
and Chapter 5 will consider other types of branching. A summary of

machine algebra appears in Chapter 9, pages 190-195.

The operation "=" is permitted in all classes of algebra except
parameter algebra, and means the following: 'evaluate the expression to
the right of the '=' sign, and place the result in the location specified
on the left of the '=! sign.” In other words, expressions such as

B=B+1

are allowed and make sense with this definition of "=". This statement
means "'increment the number in location 'Bf by one.," With this pre-
liminary remark we shall launch ourselves into a discussion of the var-

ious types of algebra.

Floating point algebra.

floating point algebra:

NOTES:

Te

2

OPERATION NOTE

The following operations are permitted in

MEANING

add

subtract

multiply

raise to a power

divide

reciprocal divide

take abs., value of preceding

take neg. abs. value
of preceding
change sign of preceding

take square root of preceding

convert exponent minus one
of preceding result to fixed
point integer. (Integer
part of log, [result]).

convert preceding result to
fixed point integer.

if result of preceding is
0, set to 1,

If result of preceding is
= 0, set to 1; otherwise
set to O.

The expression for the exponent!, following '"**," must be in

parameter algebra., For example:

Bx*2, B*¥*¥(GE + 1),
Reciprocal divide differs from
the denominator appears first,

equivalent. See pages T2-73.

-69-

B¥*(2-TH)

regular divide only in that
Thus, "C//B" and "B/C" are

e This operation is valid only when the preceding result is
positive. If an attempt is made to take the square root
of a negative number, an indicator is set which may be
tested by entering the IVY subroutine "$TT" (Chapter 6,
pages 128-130 .)

Parenthesis conventions., Floating point algebra, unlike parameter

algebra, may contain parentheses, for one of two purposes: first, to
contain a modifier of a symbol, or second, to contain units of the alge-
bra. The second use will be described here; the first will be encoun-
tered later in the section on modifiers (pages Tu-8k4).

As in parameter algebre, if parentheses are lacking altogether,
operations proceed in simple sequence from left to right. For example,
observe the following equation in machine algebra without parentheses

and its equivalent in display algebra:
MACHINE DISPLAY

V(cg - ¥)e,C, - C,
R1 = C2%%2 - L,OXCI*C3.§R - C2/2.0%C1, 1, = 2 .c,

The equation shown is an attempt to use the gquadratic formula to find
one root of a quadratic equation with real roots. Correctly written,

with parentheses, the equations appear as follows:
MACHINE DISP1AY

)
c. - be.c -C
R1 = C2xx2-(4.0¥C1%C3) .gR-C2/(2.0%C1), r, =l—02 13 2

1
2c1

Note that the purpose of parentheses in machine algebra is to localize

the operations so that they do not affect the result of the previous

-T70~-

computation. When a left parenthesis is encountered, a new level of
operation commences in which the algebra within parentheses is performed,
with the convention that each operation within parentheses is performed
on the preceding result only as far back as the left parenthesis. The

above example might be diagrammed as follows:

Levei O: |R|—-Resu|t Adr. | (D—- Result Adr. Continue

={_| Result—= @ Compute /UResuit —())| _[Compute Result
Level i: IComvufe Canx2 l - “-“J-0P. OOR@.sR-C2[|"1" =P, 0w 1—0
c l) pute |) I
. ompute Result Compute
Level 20 | 4 oxcinca —@ | [2oxc _‘|Rf"é'

Ten levels, i.e., ten sets of parentheses within parentheses, are allowed
in IVY. Thus one can evaluate quite complicated expressions in the
machine algebra, for example:

MACHINE DISPIAY
)2

2,0 + (C1%(C2x%(3+TH))) +C5%x2 (2+c.c tTH | o

172 b

Note: To avoid confusion, brackets "[1" and "curly" brackets "{ }"
can be used on coding sheets if desired. They will be punched
as parentheses, however.

However, it should be pointed out that this example can be written with

only one set of parentheses, as follows:

C2%%(3+TH)*C1 + 2,0 + C3**2

In general most equations can be optimized so that a minimum of paren-

theses occur, by moving multiplications and exponentiation to the

-71=-

beginning of the equation and by using the "reciprocal divide" (//) in-
struction. Below is the quadratic formula, optimized in this fashion,
and evaluation of the polynomial Ph = d1y3 + d.2y2 + djy + d; , in machine

algebra:

R1

P4

2.0%C1 [/ca%*2-(L4*C1%C3) . gR-C2

D1%Y+D2%Y+D3%*Y+D4

Thus, note that the quadratic formula cannot be optimized for better than
one set of parentheses, while polynomial evaluation needs no parentheses
whatsoever. A peculiarity of the "//" operation should be noted here:
everything to the left of "//" is the denominator of the fraction being
computed; everything to the right is the numerator. Thus parentheses are
not needed to enclose either expression, and the field of the square root
operation (in this case) need not be enclosed in parentheses since its
field of operation is assumed to start to the right of the "//."

A further advantage of the "//" operation becomes apparent if one
considers the evaluation of continued fractions; for instance, in display

algebra, the expression

This quantity can be written in machine algebra in either of the follow=-
ing ways:

Y = ((F + ¢//E) + D//C)+H//B, or Y = B/(H + (¢/D + (E/(F+G))))

We note that the first expression, using the reciprocal divide

-72-

instruction, has two less sets of parentheses than the second. Generally,
algebraic expressions containing fractions with complicated denominators
can be evaluated more efficiently using the "//" instruction. See Chap-

ter 8, pages 163-164, for further discussion.

Operands which may appear in a floating point expression. We

have seen above a number of allowed operands in the examples given. Be-
low is a complete list of the operands which may appear:

1. Any symbol for a single word or array which has been defined
and/or loaded as a floating point number, interpreted by IVY to mean the
first element of the block.

2. Any symbol as in "1" followed by a number n, interpreted by
IVY to mean the nth element of the block.

3. Any floating point literal, i.e., a string of digits contain-
ing a decimal point and which may be followed by an exponent. The nota-
tion here is the same as the notation for loading floating point numbers
on "D" and "E" cards, except that in literals the decimal point must
occur between two digits, and not at the beginning or end of the number.
Examples: 2.0, 3.1415926535, 500.62-3, 256.15+2, etc. Illegal: 2, 2.,
2, etc.

4, Any parameter algebra expression (including a single symbol
or a single fixed point literal) may occur following the operation "%*,"
Some further examples of machine algebra and display algebra follow, to

clarify the above list.

-73-

MACHINE ALGEBRA DISPLAY ALGEBRA

Y = 2 - 3.0%¢(2-6.53) Y = (2-3) (2-6.53)
AREA=R**3%l,0%3,1415926535/3.0 A= %‘- X
1

AREAT = Bl + B2%0.5%H A, =3 (b1 + b2)h
DPUV = U1*V1 + (U2%v2) + (U3*V3) UV = UV ok UV, o UgVg
D=B+C+§ d=|b+c|
DeB+ g+ (C+ g) a=|p|] + |ej
CPUV1 = U2¥V3-(U3%V2) (uxv)1 = uyVy = UgVp
D=Z1-Y1%%2+(22-Y2*%2) 5 5 51

+ (23-Y3%%2) AR a Y25 + (29)% + (25 -7;)

2 2 2 2

YS1 = AX + (2.0¥BX)*AX + (BR**2) y, =&, +2ab_ +b_or (ax + bx)

or AX + BX¥%2

We note that in many of the above expressions, more parentheses are needed
in the machine algebra than in the display algebra counterparts. However,
quite often in general equations fewer parentheses are needed in machine
algebra than in display algebra. In a complete code, quite frequently the
number of parentheses used will usually be less than the number needed in
display algebra.

Address modifiers. Any symbol in a floating point expression

may be followed by a modifier in parentheses. The purpose of these modi-

fiers is to éo one of the following:
A. To modify the address of a block in some ways, e.g., by means
of parameter algebra, contents of an index register. or stored address.

B. To specify a particular arithmetic such as fixed point or

~Th-

Boolean. Floating point algebra is always assumed unless one of these
modifiers is used, or unless the arithmetic desired is obvious from con-
text, e.g., by the occurrence of a fixed point literal or an index regis-
ter symbol in the expression.

C. To cause an address to be interpreted in .a particular way, as
for instance to address the "Q" portion of a double stored number.

D. To cause only a portion of the quantity addressed to be used,
such as the sign only or the magnitude only.

E. To cause all or part of the control word of a symbol to be
used instead of the data addressed by the symbol.

F. To cause the contents of two locations to be swapped.

For the sake of completeness, all modifiers allowed in IVY algebra
will be discussed here. Many of these are appropriate only in fixed
point or Boolean algebra. A summary appears in Chapter 9, page 193,
These modifiers will now be discussed in turn and the conventions illus-
trated by examples,

A. A symbol may be modified by parameter algebra alone, param-
eter algebra plus an index register, as follows (where P represents any
parameter algebra, Xn represents an index register symbol, An represents

a store address symbol) and SYMBOL ($WA) is the control word address of

the block:
ALGEBRAIC FORM ADDRESS COMPILED
SYMB@L(P) SYMBGL($WA) + P
SYMB¢L(xn + P) SYMBPL($WA) + P modified

by c(xn)

75

AIGEBRAIC FORM (continued) ADDRESS COMPILED

SYMBL(X) SYMB@L(gWA) modified by C(X n)
SYMB@L(An) A
SYMB¢L(xn + An) A modified by c(xn)

*C(X) ("the contents of X ") provides a dynamic address modification;
the C(X) may be changed &t will during execution of a program, thus
dynamlcally stepping through an array or calling sequence. The c(x.)
are added to the specified address in order to perform this modifi-
cation. On the 7090, this addition is simulated, and how this is
done is of no concern here; the 7090 programmer can safely assume that
his index registers add as surely as 4o those of the 7030. In the IVY
system, index registers always contain positive values and are not
allowed to assume negative values, even on the T030, which allovs
signed value fields. The extra fields of the 7030 index register are
not accessible to the programmer unless he uses longhand code.

The "store address" feature allows the algebraic coder the unigue
privilege of storing addresses, if he so desires. That is, he can
first compute the address he wishes to use, assigning to it one of the
"An" symbols, and then by placing it in parentheses as a modifier, in
a later expression, cause a "store address” to insert the calculated
expression. Thus the symbol modified by an "An" expression is a dummy;
any symbol could be used, although in practice the symbol for the block

addressed by "An" is generally used. The format for computing a stored
address is as follows:

A.nom = F

SYMB¢L(Xn + An) =

R SYMB¢L(An) * e

cee ("An" occurs "m" times)

-76-

That is, An is entered followed by a period and one or more digits which

"

give the number of times "An occurs in the expressions following. The

letter "F" represents a fixed point expression for the address. The code

which follows must contein "m" symbols modified by "An". Once these "m"

" i available to be re-used to store

symbols have occurred, the same "An
a different address. Since only a very few distinct "An's" are usually
necessary to encompass a given sequence of code, one can quite easily re-

use each "An as its field of operation is completed, and thus reduce
considerably the number of "A" symbols specified on the "S" card (page 26).
The number of "A" symbols specified should be minimized by adopting the
above practice of re-using an "An" as soon as its field of action is com-
pleted. This is what is meant by "independent" store address expressions
mentioned in Chapter 2, page 28. Note that "An" entries are "formula-
limited," that is, once an “An" is defined, all symbols modified by it

must appear in the same formuls.

The following example should serve to illustrate the above discus-
sion. This is a segment of an actual code, and many details in it have
not yet been discussed. By the end of Chapter 5, all the techniques of

this example will be clear.

-77-

|Lino No- C | MIX " CROSS * SECTIONS NOTES
2‘ l ‘ I I}MX.X9, ($J) MXS=0,%I=X], %S=X2, #M=X3, I ' I(DI l
3 M{I,MM), S=MS(M),(L1)S=0,) @

4’ I ‘ AL 3=C{$W)+CXX (M), | |GD| l
5 ™1 lru,cxx2), ciz+an=o, (), &)

sl L2,I=MN(S), TI=MDV(S)%EV+1.0, | l@l l
7 (L3)TI=M, "‘W

s| I Ti2MD(S,MI®T], A2.1 = CL$W) + CXX (I), |®l I
9 [Lz oxx2), C(z+AN: TIHCIT+A2)+CIZ+AN, (),)
14 | {LIYMD(S) = M, ™ IGJI
T SzS+1,(L2),

|z| I L1, (M), {L4)ICT = NZ, n l I I
13 ($P, $PR: $F, FMI($WP): $A,C(SWP): HM:GM),

u‘ | l I L4, (X9+1), " I l I
IS . L3, ($P, $OP: EP2($WP)) .

NOTES:

e Here we see the "*" convention, which we first encountered on
"D" cards (page 55), used here to define new symbols for in-
dex registers. Index registers are the only quantities for
which this is allowed on "I" cards. Note also the use of the
"d3" or "jump" feature, originally discussed in connection
with data (page 55). If the condition following the "($J)" en-
try is satisfied, the formula or formula set is not assembled.
No second "gJ'"between commas is needed. This feature is use-
ful in case a particular formula is not used in an assembly,
i.e., is not entered if the condition is satisfied. See page 10L.

2. Expressions for Al and A2 are computed.

3. Index registers plus modifiers Al and A2 occur in these
expressions.

4, Here we see modification by index registers alone.
The above example will also serve as an example for other techniques
which will be described in this chapter and the next.

B. In an expression consisting entirely of symbols, and where the

type of arithmetic is not obvious from context (no literals or index re-
gister symbols occur); if algebra other than floating point is desired,
one of the modifiers "A" for fixed point or "B" for Boolean must be placed
within parentheses, separated from the modifier of type A by a comma,
after the expression to the left of the equal sign. The formats are as
follows:

... (fixed point expression)

SYMB¢L(MA, A)

SYMB¢L(MA, B) = ... (Boolean expression)

1

where MA is a modifier of type A (i.e., a parameter algebra expression,
index register, etc.) and "A" denotes fixed point arithmetic following the
"=," and "B" denotes Boolean. Whenever one of these modifiers is present,
modifier "MA" must occur. For example, if we wish to compute a value for
a single fixed point quantity "CE," if the expression the right of the "="
is unambiguous, we can write

CE = ... (expression)

but if the expression is ambiguous, we must write

CE(1, A) = ... (expression)

The "A" and "B" modifiers can appear only to the left of an equal sign.

C. Modifiers for dealing with double stored numbers can occur only
to the £1§EE of an equal sign, and are added inside parentheses, after a
comma, in the same manner as modifiers of type B, These modifiers appear
in the following format, where "M," represents a modifier of type A,

A

which must be present, and where "P" represents any parameter algebra:

=-79=~

FORMAT EXPLANATION

SYMB¢L(MA,Q.P) "Q" portion of DS number having tag
length P

SYMB¢L(MA,M.P) Magnitude (absolute value) of "Q"

SYMB¢L(MA,T.P) "p" portion, length P, of DS number.

Note that since the "T" portion of a double-stored number is unsigned,
the magnitude ("M") modifier always unambiguously means the magnitude of
the "Q" portion. Also recall that the "Q" portion may be either fixed or
floating point, so that "SYMB¢L(MA,Q..P)" and "SYMBPL(M,,M.P)" are embig-
uous expressions, and if fixed point algebra is desired, the "A" modifier
described sbove must be used left of the equal sign to specify arithmetic.
However, "T" is always fixed point and defines an expression as fixed
point unless other arithmetic is specified. Examples of these modifiers

follow. 1In the section on fixed point algebra we will encounter further

examples:

EXAMPLES NOTES
SN(X1+3) = AGT(X2,T.3).gCAXFN(X2)/3.15621-06 1
AF(X3+GE+17) = RST(1,Q.5)//CX(N1+3) - CRYZ(2,Q.7) 2

NOTES: 1. In this example the use of "T" in a floating point expression
is permitted, since the gquantity is followed by the opera-
tion ".gCA" which converts it to a floating point number.

2. The "Q" portion of two numbers having different tag lengths
are used in this algebra.

If it is desired to compute the "Q" or "T" portion of the quantity

to the left of the equal sign, one must use expression modifiers, described
below on pages 83-8k.

«-80-

D. Modifiers of type D are used to impose the sign of a quantity
on the result of the previous calculation, or to ensure that only the
magnitude (absolute value) of a quantity takes part in an operation, and
in one case, to save the remainder of a division or the low-order part of
any floating point operation, for double precision purposes. Type D modi-

fiers can occur only to the right of an equal sign. These modifiers are

as follows:
FORMAT EXPLANATION

SYMB¢L(MA,M) use magnitude of addressed quantity

+SYMB¢L(MA,¢) impose sign of addressed quantity on
previous result

-SYMB¢L(MA,$) impose negative of sign of addressed
quantity on previous result

*SYMB¢L(MA,$) multiply sign of addressed quantity
by sign of previous result

SYMB¢L(MA,R) save the low order part of the result
of this operation in the IVY location
II¢CS-I 1"

An example of the magnitude modifier "M" is shown in line 8 of the coding

example on page 78. Other examples:

EXAMPLE NOTE
RXN(X1+A2) = GPG(X3)**3+GE(1,§) 1
APG = ALPHA(X3+N) + B(X2) 2
*#STV(X1+A1,8)

SUMY = AB(X1+1,R) + AC(X1+1) 3
+ AD(X1+41)

EMG(X5+3+GE) = SRN(X2+1,R) 4

-SRT(X2+1) + $/FNT3

-81-

NOTES: 1. The sign of GE1 is attached to the resuli of the previous
operation,

2., The signs of STV(X1+A1) and the preceding result are multi-
plied, and this resulting sign is attached to that result.
If the signs are alike, "+" will result; if unlike, "-" will
result.

3, The low order part of the floating point result of this cal-
culation is stored in "$CS1," from which it may be obtained
for double precision work. We recall that on the 7090, both
a high-and low~order part are carried in all floating point
operations; on the 7030, the "R" is a signal to execute
double precision operations followed by a "store low order"
instruction to "gcS1." The "R" modifier, if at all possible,
should always occur as near to the beginning of the expres~
sion as possible in order to speed compilation.

4, In this case, the remainder of the division, if any, is

stored in "$CS1" once the operation (division) has been com-
pleted.

E. Address modifiers of type E cause the symbol to be interpreted
so that the operand becomes all or part of the control word, or the ad-
dress of the control word, associated with that symbol. Ordinarily these
modifiers are used only with fixed point and index arithmetic. All of
these modifiers except "$WP" are allowed either to the left or to the

right of an equal sign. Type E modifiers are as follows:

MODIFIER FORMAT OPERAND GIVEN

SYMB@L(gW) control word

SYMB@L(WA) control word address
SYMB@L(gWC) control word count
SYMB@L(gWP) position of control word

-82-

Note that no other modifiers of any type may appear in parentheses with
the control word modifiers. The chief use of control word modifiers is
in the computation of stored addresses (see lines 4 and 8 of the example

on page T8), for which "gW" is ordinarily used; the computation of index

register values, using "¥WA," "$WC," and "$WP"; and in manipulations in-

volving the symbol table. Examples of these latter two uses are found in

the sections of this chapter dealing with index and fixed point algebra,
and in Appendix 1.
F. The swap modifier "S" always appears to the right of an equal

sign and must follow a type A modifier. The format is as follows:
SYMB¢L1(MA) = SYMB¢L2(MA,S)

The contents of the two locations are simply swapped, i.e., interchanged.
No arithmetic is permitted to the right of the equal sign.

Expression modifiers. Two modifiers, known as expression modi-

fiers, may be appended to the end of an expression in order to specify
that the result is to be stored in the "Q" or "T" portion of the quantity
which appears to the left of the equal sign. These modifiers appear as
follows, where "MA" represents a modifier of type A which may or may not

be present, and where "P" represents any parameter algebra:

SYMB¢L(MA) (expression).gQ.P

SYMBOL(M,) (expression).$T.P

Ordinarily the modifier ".$T.P" should follow only fixed point expres-

sions. ".$Q.P" may follow either fixed or floating point expressions,

~83-

since the "Q" portion of a double-stored number may be either fixed or
floating point.

Special symbols addressable by IVY algebra. Four of the special

"$" symbols in IVY represent data blocks and may be addressed by alge~
braic code. All of these except "#M" may be modified by modifiers of
all types. However, the control word modifiers have a somewhat differ=-
ent meaning when attached to "gCS" and "g2"; this is covered in Chap-
ter 5 in the section on calling sequences, pages 108-110. These special
symbols and their meanings and usage are as follows:

1. ¢M. This symbol may occur only to the right of an equal
sign, without modifiers. It means, "repeat the quantity to the left of
the equal sign." For example, the following two expressions are equi-
valent:

AD(X2+GE*3) = AD(X2+GE*3)*SN(X3+2)/FN5

and

AD(X2+GE*3) = #M*SN(X3+2)/FN5

i

2. $CS. This symbol represents the "calling sequence data
block" and may appear on either side of an equal sign, with or without
modifiers. Generally "gCS" is used to convey information to, or to re-
ceive information from, a subroutine. We have already encountered
another use of this block: the low order part of a double precision
result is stored in the location "$CS1." The "$CS" block is twenty
words long and can be used the same as any data block except that it

should be recalled that the contents of "$CS" are destroyed by some

“8ijm

subroutines. Further discussions of "§CS" are found in Chapter 6,
pages 127-129.

e ¢Z. This symbol, which must always have at least a modifier
of type A, may occur on eitherside of an equal sign. It simply means

"supply an address of zero." Its chief use is in store address expres-

sions of the form

$2 (X + A, M2)
where the symbol is unimportant, since "An" is the address actually used,
and in subroutines, to refer to entries in a calling sequence, in the

form

$Z (xn+ N, Ma).

("M2" represents either a null field or some type of legal modifier other
than type A.) The usage of "$Z" for the latter purpose is discussed
in Chapter 5, pages 108-110.

4, @D, $DA, $DB,...,PDZ. These 27 special symbols are shared by
subroutines and are used for internal data. A complete description of
thelr usage is given in Chapter 5, pages 110=112,

5. @$L. The "gL" symbols provide access to certain special con-
stants and addresses used by IVY. The symbols address the following in-
formation: @L1 = FAC (first address for code); $I2 = FAD (first address
for data); $L3 = NLA (next loading address for code); $L4 = NBA (next
block address for data); ¢L5 = 709010 if machine is 7090, 705010 if 7030;

gL6 = number of remark characters per word. $L1, #12, $I5 and #16 are

-85-

availlable for testing purposes only. ¢L3 and ¢Lh may be altered with dis-
cretion, as described in Appendix 1, pages 203-209,

Statement separation and continuation. As one can observe from

examining the example on page 78, IVY statements in the algebraic language
are separated by commas. There may be any number of statements on a card,
of up to 71 characters in length. An algebraic statement can be con=-
tinued from one card to the next provided that symbols, literals, symbol
modifiers in parentheses, expression modifiers, and operations of more
than one character ("*¥," "+g," etc.) are complete on one card. These
items which cannot be split from one card to the next are called units

of an expression; thus we can say that expressions can be continued from
one card to the next provided that units of the expression are complete
on one card.

*¥Blanks oceurring in expressions are always ignored, as we can see
by again referring to the example. Thus blanks may be used, if desired,
to separate units of the expression for easier reading. The carat"”™" is
used to denote blank spaces on the coding sheet; if more than one blank
is desired, the notation is to write the number "n" of blanks enclosed
in a box, thus: . Note that one need not use these conventions to
represent blanks occurring at the end of the card. In general, blanks

are totally ignored on every type of IVY card except the remark card
where they form part of the input data.

Fixed point algebra. The same operations are allowed in fixed

point algebra as in floating point algebra, with some changes in meaning
caused by the peculiar nature of fixed point algebra. These differences

are as follows:

-86-

OPERATION MEANING
/ divide, and truncate quotient to integer.

// reciprocal divide, and truncate quotient
to integer.

°$CX convert fixed point number to exponent of
floating point number, i.e., give 2 result)
in floating point.

+$CA convert fixed point number to floating
point number.

+#R take square root, and truncate result to
integer.

These differences are, of course, occasioned by the difference between
floating and fixed point arithmetic. Fixed point arithmetic is the
arithmetic of integers; hence the difference in the divide instructions.
The same operands, with the exception of literals, and with the
addition of symbols for "K" blocks (page 189), are allowed in fixed point
algebra as in floating point. Literals, of course, must be fixed point
decimal numbers, i.e., a string of digits not containing a decimal
point. In addition, symbols for index registers are allowed in fixed
point algebra; when these symbols are used, the contents of the index
register are used as an operand. When an index register appears in an
expression, there are two modes of operation: immediate and direct.
The "direct” mode is signalled by the modifier "A." When the "A" is
missing, immediate algebra is assumed; that is, the expression is
assumed to be parameter algebra and is computed according to the values

of the parameters loaded at the start of the deck.

-87-

The same address and expression modifiers are allowed in fixed

point algebra as in floating point algebra. The same conventions are

also used for parentheses, the continuation of statements from one card

to the next, and the use of special "$" symbols.

The following examples of, and notes on, fixed point algebra

should serve to illustrate all necessary conventions.

NOTES:

EXAMPLE NOTE
ARX(X1+3,A) = VDBC(X3,M) + RX3/AGTS*g | 1
AD(1,A) = X3%VXC1 + PAR2 2
AE = X5 + GE*TH/3 3
FRN(X2) = 3 + ART(X1)*56-SRTN(X2,8).¥CA.$Q.5 b
A3,6 = AD(gW) + ADX(X1) + ADXX(X2) 5
INDEX = X1 - VRN(gWwC) 6

2,

3

We note that in this example the "A" modifier is used to spe-
cify fixed point arithmetic, since the expression, containing
only symbols, is ambiguous. Also note the use of the "magni-
tude" modifier and of "*§" to change the sign of the expression.

In this second example the "A" modifier is used in a different
sense, since the expression contains a symbol for an index re-
gister and hence is unambiguous. The "A" is a signal that the
algebra is "direct" or "dynamic," i.e., the computed values of
the symbols at the time of execution indicated are used in the
algebra.

Here again the expression involves the contents of an index
register, but since the "A" is not specified, the arithmetic
is assumed to be "immediate" or "static," i.e., the values of
the specified parameters at the time of assembly are used in
the algebra. This is done by placing the operands directly

-88-

into machine instructions, by using immediate arithmetic
on the 7030 and immediate-type instructions such as "TXI"
on the T7090.

k, In this fixed point expression the "A" is not needed since
the occurrence of fixed point literals makes it unambiguous.
Note that the expression is converted to floating point and
then stored in the "Q" portion of the double-stored block
"FRN," having tag length 5.

5. This is an example of the computation of a stored address.
Recall that other examples of this were shown in the coding
example given on page T8. The usual expression for a
stored address includes the control word of a block (from
which the base address is obtained) modified by the addi-
tion of one or more index multiples under the control of
index registers. The philosophy of this technique is dis-
cussed in detail in Chapter 8, pages 168-169.

6. This is an example of an immediate indexing operation in

which the control word count is subtracted from the con-
tents of the index register.

Index register algebra. Although index registers, as we have seen,

can appear in fixed point algebra, true index register algebra differs
considerably from fixed point algebra. Index register algebra is de-
noted by the occurrence of an index register symbol to the left of the

equal sign. The operation set for index register algebra is as follows:

OPERATION MEANING
+ add
- subtract
+fX if previous result

is negative, set to 1

Thus we see that the operation set for index arithmetic is quite re-

stricted. However, under most circumstances the operation, "*," for

-89-

instance, is not needed since tables of index multiples can be constructed
on "D" cards and used in index arithmetic; and constructing index multi-
ples (done automatically by IVY) is the chief reason for the existence of
a "multiply" operation. If it is desired to load an index from s more
complicated expression, one can first use fixed point algebra to compute
the expression, and then load the index from the location where the re-
sult was stored.

It has been remarked before that index register contents are re-
stricted to positive, non-zero values. The purpose of the ".$X" instruc-
tion is to keep the index register contents positive by guaranteeing
that if the result of an expression is negative, a positive result of 1
will be substituted. The magnitude of index register expressions must
be less than 215 on the 7090 and 218 on the 7030. Note that if the re-
sult exceeds these bounds, the number given will be truncated modulo 215
or 218 as the case may be,

One modifier is allowed left of the equal sign in index register
expressions: "A" separated from the index register symbol by a period.
The purpose of this "A" is the same as in fixed point algebra when in-
dex registers are present, to specify "direct" arithmetic. Index regis-
ter algebra is always "immediate" if the "A" is not present. Of course,
here as elsewhere, the apellations “direct” and "immediate" apply only
to units of the expression other than index register symbols. In either
fixed point or index algebra, the contents of the index register at exe-

cution time form the operand.

-90-

Some examples of index register algebra follow:

EXAMPLE NOTE
X1 =X1 + 1 1
X3.A = AD + 3 2
X3 =CE + 3 3
X2.,A = AE-INDEX.$X b

NOTES:
1« The contents of index 1 are incremented by 1.

2. In this case, direct algebra is specified by the "A." The
contents of "AD" at execution time are incremented by 3
and placed in index register 3, Note that "AD" is the sym-
bol for a rather complicated expression illustrated in the
section on fixed point algebra. This example thus shows
how a dynamic loading of an index register can be performed.

3. Immediate algebra is assumed here, which means that the con-
tents of GE at compiling time, plus 3, are placed in index
register 2,

4, Here the arithmetic is performed in the direct or dynamic

sense, and the index register contents are set to 1 if the
result is negative,

Renaming of an index register. An index register may be renamed

at any point in the code by the use of the "*" convention which was
originally discussed in connection with data blocks on page 55.
Usually an index register will be renamed to a single-letter symbol to
save the necessity of writing the two or more characters associated

with every "Xn symbol. If it is desired to use a symbol of two letters

or more to rename an index register, the symbol should of course have

-91=

been defined by its appearance on a "D" card. The format for renaming

an index register is as follows:

*SYMB@L = X

where "SYMBPL" represents any single letter symbol (except A, X, or L),
or any symbol of more than one letter which has been previously defined
on a "D" card, i.e., entered in the symbol table.

Using what we now know, let us construct a simple example of an
index loop. An index loop is specified by placing the values between
which the index is to run, separated by a comma, in parentheses after
the name of the index register, at the beginning of a loop. The end of
the loop is denoted by placing the index register symbol in parentheses.
We have encountered other examples of index loops in the example on
pege T8, lines 5, 9, and 3-12. The following loop is for the simple
purpose of constructing the dot product "D" of two vectors "VA" and

"VB," each having three components:

I|*I

D + VA(I)*VB(I),(I),ee.

0,1(1,3), D

X1, D
or, equivalently,

I|*I = X1, D = 0,I(3,1), D = D + VB(I)*VA(I),(I),...

At least one of the limits of an index loop must be 1. The other may be
represented by a literal, as above, or by a symbol, as in the example

on page 78, or by a parameter algebra expression. The operation is per-
formed for the first value of the index, and then the loop is reiterated

after the index has been increased or decreased by 1, until the index

-92-

reaches the final value. If it is desired to construct a loop for which
one of the limits is not 1, or for which the index increment is not 1, or
where the index is to run between computed (as opposed to parameter)
values, other techniques must be used, utilizing the "Ln" entry. Examples
of this appear in Chapter 5, page 99, and Chapter 8, pages 169-171.

Boolean algebra. Boolean algebra is used for performing logical

operations by obtaining a result involving a bit-by-bit comparison of

two or more operands. The set of Boolean operations is as follows:

OPERATION NOTE MEANING

+ 1 logical add, sometimes called
"inclusive ‘or'"

* 2 logical multiply, sometimes
called "and"

' 3 take one's complement of preceding

«BU b give 1 if result is # O

gV L give O if result # O, otherwise
give 1,

NOTES:

1. The inclusive "or" of two binary numbers is obtained by compar-
ing the numbers bit-by-~bit, and setting the corresponding bit
of the result to 1 if either or both operand bits are 1, and
to zero otherwise. For example, the inclusive "or" of
101101011101 and 001011100101 is 101111111101,

2. The "and" of two binary numbers is obtained by comparing the
numbers bit-by-bit, and setting the corresponding bit of the
result to 1 if both bits are 1, and to zero otherwise. The
"and" of the two numbers given sbove is 001001000101. Note
that the Boolean sum of the exclusive "or" and the "and" is
the inclusive "or."

-93-

3« The 1's complement of a binary number is obtalned by replacing
all 1's with zeros, and all zeros with 1's., For instance, the
1's complements of the two numbers in note 1 are 010010100010
and 110100011010,

4, These two operations are the same as the corresponding ones in
fixed and floating point.

One can represent the Boolean operations graphically, as is illus-
trated below, assuming we have two intersecting regions "A" and "B."
The result of the operation is the shaded area. We might say that the
ares cormmon to both regions corresponds to the bits of both binary num-
bers which are equal to 1, and the rest of the area corresponds to the
differing bits of the binary number. The area outside the regions cor-

responds to the bits of both numbers which are zero,.

Ll

From these illustrations a few identities of Boolean algebra become evi-
dent. For instance, the exclusive "or" of two numbers is equal to the
logical sum of the "and" of the first number and the complement of the
second, and the "and" of the second number with the complement of the

first. That is, the following expression produces the exclusive "or':

9l

Y(1.,B) = v¥(W') + (wx(v'))

The exclusive "or" of two binary numbers is obtained by comparing the two
numbers bit-by-bit, and setting corresponding bit of the result to 1 if
the two bits differ, and to zero otherwise, If we use the two numbers of

note 1, page 93, this can be verified for a particular case:

101101011101 (exclusive "or") 001011100101 = 100110111000

and
101101011101%(0010111001011) + (001011100101%(1011010111011)) =
101101011101%110100011010 + (001011100101%010010100010) =

100100011000 + 000011000000 = 100110111000,

In this case, both results are the same. In general this is true, although
no proof is offered here. Many other similarly interesting relationships
between Boolean operations can be discovered by studying the diagrams.

It is possible to obtain sixteen possible results by combining two numbers
using the IVY set of Boolean operations; these sixteen results make up the

entire set of sixteen so-called logical connectives.

The following further observations apply to the Boolean set:

1. The operations "+" and "#" are commutative and associative,

i.e., B+ C = C + B, B¥C = C¥B, and D*¥(B*C) = (D*B)*C, etc.

2. The operation "*" is distributive over "+," and "+"
is distributive over "¥," i,e.,

D + B*C
D¥B + C

D*C+(B*C);
D+ Cx¥(B + C).

]

3. The "and" (logical product) of two numbers contains less
one bits than either number unless both numbers are equal;

-95_

the inclusive "or" (logical sum) of two numbers contains
more one bits than either number unless both numbers are
equal. The "and" and inclusive "or" of equal numbers

are equal to the two numbers; the exclusive "or" of equal
numbers in zero.

Boolean expressions must always be denoted by the "B" modifier
to the left of the equal sign. The algebra to the right of the equal
sign may contain symbols for Boolean blocks or Boolean literals. Or-
dinarily Boolean expressions should not contain symbols for non-Boolean
quantities unless great care is exercised. While some very useful com-
putations can be carried out by vioclating this rule, such computations
usuelly will not work on all machines for which IVY is available, since
the formats of internal words differ. For example, on the 7090, the
following two expressions are equivalent and would compile the same se-

quence of instructions:

ADF(1,A) = AXCG(3+X3) .§CX
and

ADF(1,B) = AXCG(3+X3)*377000000000,ADF(1,A) = ADF/(2%%27) - 129,*

whereas on the 7030, the latter expression will definitely not do the
same as the former, because of the differing word lengths and floating

point formats on the two machines.

¥
In the last expression, "$M" can be used instead of "ADF" on the right
of the equal sign, if desired.

-96-

CHAPTER 5

FLOW OF CONTROL, CALLING SEQUENCES, AND THE EXECUTE STATEMENT

L-entries., "L-entry" is the term applied to the use of a numbered
"In" symbol for branching purposes. An "L-entry" may be used for both
conditional and unconditional branching. In the algebraic language the
entry point is marked by the occurrence of an "Ln" symbol between commas
(for longhand conventions see Appendices 2 and 3). Unconditional branch-
ing to the statement immediately following this entry point is specified
by the occurrence of the same "Ln" symbol in parentheses between commas.
This branching may be performed in either a forward or backward direction,
thus:

eees(Ln),ees(algebra)... >

cesee,ln,eese(algebra)... :: flow of control

ceseey(In),...(algebra)e.. s

An entry of "In" between commas for a particular value of "n" can occur

only once in a given formula. Conditional branching to a given "In" entry

is specified by the entry of "Ln" in parentheses, followed by a modifier,

-97-

if necessary, specifying the type of algebra used in the expression to

the right of the right parenthesis. If the given condition is satisfied,

the branch is performed. Otherwise, control proceeds to the next algebraic

expression,
where
1.
2,
S
L,

The general format is as follows:

,(ILn,M)Algebra = C,

"In" represents the entry to which branching is to be
performed.

"M" represents one of the modifiers "A" (for fixed
point), or "B" (for Boolean), if necessary to spe-
cify the type of algebra to be performed in the
following expression. 'M" and the comma preceding
it may be omitted if the algebra is unambiguous
according to the tenets of Chapter k.

"Algebra" represents any machine algebre expression.

"C" represents one of the following conditions:

C CONDITION
Z or O branch if result is zero
NZ branch if result is not zero
GZ branch if result is greater
than zero

A branch if result is less than zero
G branch 1f result is zero or greater
ZL branch if result is zero or less

P branch if result is plus

M branch if result is minus

Examples. An examination of the coding example in Chapter 4,

page 78, will reveal an unconditional branch on line 11, and conditional

branches on lines 3, 7, 10, and 12. The "Ln" entries to which branching

is performed are on lines 6, 12, 14, and 15. Note how the flow of control

-98-

is marked by arrows.

The following example also makes use of conditional and unconditional

"Ln" branching., This example performs the matrix multiplication of the

I X J matrix "MA" times the J X I matrix "MB" and stores the I X I result

into "MC."

Line No. | 2 | 7 CODE
NOTES

i | C | MATRIX * MULTIPLY * ROUTINE
2 IIXi=1, X221, X321, K(,A)=I#J,M(1,A)=T%%2, I
3 ™ fLi, meix3) =0, 2
4 E L2, MC(X3) = $M HMA(X1) # MB (X2)), 3
5 XI=XI4+1,X2:X2+],(L2,A)XI-K=2L, 3,4
6 X3= X3+ 1, (L3,A)X3-M:=GZ 5
7 XLAzXI-K+1,(L4)XI-T =G6Z, B 6
8 Xl=1, (L), 6
9 L4, X2:X2-J, (L1), << 6
10 L3,... { Code continues)

NOTES:

e All three index registers used in the code are initialized to 1.
The quantities "K" and "M" are computed for later use in index
comparison, since, as we recall, the operations "*" and "¥x"
are not allowed in index algebra. The "A" modifier is neces-
sary in both since the algebra is ambiguous. There are no
literals present to distinguish the expressions from floating
point,

2. The current element of matrix "MC" is initialized to zero

before computation begins, since the result is computed in a
cumulative fashion.

3. The current element of matrix "MC" is increased by the
products of the appropriate elements of "MA" and "MB."
Then the "MA" index, X1, is increased by I, and the
"MB" index, X2, by 1, since we are proceeding through
a row of "MA" and a column of "MB." Note that the in-
crement of X1 is by a parameter, and X2 by a literal;
hence both operations are immediate and the ".A" modi-
fier is not needed.

k, We proceed back to increment "MC" again if the row of
"MA" is not yet exhausted. Note that the ".A" modifier
is used here to specify direct, or dynamic, index alge-
bra in the test of X1 since "K" is a computed quantity.

5. If the row of "MA" is exhausted, the index for "MC" is
incremented by 1. (We are computing "MC" column-wise).
If "MC" is exhausted, exit is made to "L3." Note again
the use of ".A" to specify dynamic index algebra.

6. X1 is now incremented backwards so that "MA(X1)" will
start the next row in "MA." If "MA" is exhausted, we
start over at its beginning but proceed to the next
column in "MB." If "MA" is not exhausted, we proceed
to its next row, but use the same column of "MB." Note
that the ",A" modifier is not used when I and J are in-
volved, since these quantities are parameters, being
array dimensions, and hence can be used in immediate
arithmetic,

It should be noted that the above example is included for illus-
trative purposes only, and is not intended to demonstrate the vest pos-
sible technique for multiplying two matrices. The method illustrated is
used only because it is a familiar one.

Restrictions on L-entries. As has been mentioned before, L-entries

are purely local entities within a formula. Branching from ofle formula
to another by means of L-entries is prohibited. An L-entry in a formula
to which no branch is performed, and a branch to a non-existent L-entry
are detected as errors, and a diagnostic printout is performed. If exe-

cution reaches the point where a branch to a non-existent L-entry occurs,

~-100=-

and the branch is successful, IVY takes control, prints a comment to the
effect that execution cannot proceed beyond this point, and selects the
card reader or off-line tape in an attempt to process the next job, if any.

Pathfinder branching. Pathfinder branching is a means of controlled

entry to subroutines, when a subroutine is entered from several points in
the code and return must be made to whichever point that performed the

entry. This is done by using the pathfinder register, called "$P." When
a pathfinder branch is made, the location from which the branch occurs is
stored in the pathfinder. The subroutine, then, can load the contents of
the pathfinder into some available index register and return by branching
using this index register. The format for a pathfinder branch to an L-

entry subroutine is as follows:

»($P,1n),

Note that the pathfinder branch is unconditional. The subroutine named

"ILn" begins with the entry:

,In.Xm,

where "Xm" is the symbol for the index register into which the pathfinder

contents are loaded. The subroutine then ends with the entry

,(Xm+1),

where "Xm" is the same index register which was loaded with the pathfin-

der contents., This entry causes control to return to the expression

«101-

Tollowing the pathfinder branch to the subroutine.

Examples of a pathfinder branch and subroutine. Suppose that at

several points in a formula we calculate a quantity "Y" and we wish to
evaluate a polynomial "Z" of Nth degree for this "Y." Assume the co-
efficients of the polynomial are stored in order of decreasing powers
of the variable in the block "C." If the subroutine is called "L5," it

might look as follows:

|11] [elsxssees T

Xi(1,N), Z=2%Y+C(X1), (XD,

| H’“ﬂr (x40, 1] |

The contents of the pathfinder are placed in Xk, The polynomial is then

set to zero initially, and then each time through the loop, it is multi-
plied by "Y" and increased by the next coefficient. After the evalua-
tion loop is completed, the exit is performed to (X4+1). Note also that
the exit from a subroutine must be unconditional.

Formulas and formula branching. As has been remarked previously,

a formula is a subset of a formula set. The name of a formula is de=-
fined solely by its appearance on an "I" card and must not have been de-
fined on a "D" card. The format for entry of a formula name is the same

as for an L-entry, namely,

,FPRM, or, F¢RM.Xn,

depending on whether or not the formula is entered by a pathfinder

branch. "FPRM" represents any legal symbol not previously defined, and

-102-

"Xn" any free index register. Similarly, branches to a formula entry may

take any of the following forms:

BRANCH TYPE

, (FgRM), unconditional
, (FgRM,M)Algebra = C, conditional

» ($P,FPgRM), pathfinder

A formula may be a subroutine accessible to any formuls within the same
formula set, Jjust as an L-entry can be a subroutine within any formula.
An example of a formula which is a subroutine is the formula "MX" of the

example in Chapter 4, page 78, This formula is entered by the instruction

, (#P,MX),

and we see that the contents of the pathfinder are placed in X9, and re-

turn is made by the usual entry
’(X9+1)’

Formila sets. The name of a formula set is distinguished from

the name of a formula by the fact that it has been defined on a "D" card.
A formula set consists of one or more formulas. In addition to its col-
lection of formulas, a formula set may contain a short code controlling
entry to its various formulas, as well as one or more branches to other
formula sets. The format of a formula set entry and branches to formula

sets 1s the same as for formulas, namely:

-103-

ENTRY BRANCH TYPE
,FS, ,(Fs,M)Algebra = C, conditional
sFS.Xn, ,(Fs), unconditional
»(gP,FS), pathfinder

There are no restrictions on branches to formuls sets. These branches
may be forwards or backwards, and any formuls set may contain a branch

to any other formula set. Of course, the formula set to which the branch
is performed must be converted and in core for the branch to be legal;
otherwise, if a successful branch to a non-existent formula set is en-
countered, IVY regains control, prints out a comment, and begins search-
ing for the next job.

The "jump" feature for formulas and formula sets. We first en-

countered the "jump" feature in connection with the definition of data,
page 55 The "MX" code in Chapter 4, page 78, illustrates this feature
in connection with formulas and formula sets, Using this convention,
one can skip the assembly of any formula or formula set which is not
entered in a particular run, under parameter control. The format for

this entry is as follows:
I|F.Xn,(gJ)P = C,

where "P" represents parameter algebra and "C" represents one of the
familiar conditions. If the condition is satisfied, the assembly pro-

gram "jumps" to the next formula or formula set without assembling the

=104~

current one. Unlike the use of "gJ" with data, a second "§J" is not
needed in code, since the assembly program detects the end of the "jump"
field by detecting the name of the next formula or formuls set as the
case may be.

Calling sequences in code, Any pathfinder branch to an L-entry,

formula, or formula set may contain a calling sequence. The calling
sequence consists of items of information separated from each other by
colons, each entry between colons representing a full word. These en-
tries are described in detail in the treatment of the "K" card, Chap-
ter 3, page 6L4. Calling sequence word entries follow the pathfinder
branch in parentheses, separated from it by a colon in the following

format:

,($P,SUBR: CS1: CS2: CS3:...: CSN),

where "CS1," "CS2," etc., represent calling sequence word entries. The
symbols in calling sequence word entries can refer to data, remarks, or
calling sequence blocks defined by "K" cards. IVY internal symbols
starting with"g" cannot appear in calling sequence word entries because
of the near impossibility of distinguishing between them and the "gxxx"
entry. A description of addressing conventions for calling sequence
words follows the next section.

Returns to a calling sequence. If a calling sequence on instruc-

tion cards contains N calling sequence word entries, return is made to

the expression following the calling sequence by the branch

=105~

,(Xn + N+ 1),

where "Xn" is the index register which has been loaded with the pathfin-
der contents. Thus, if a pathfinder branch is not followed by calling

sequence word entries, the return is effected by

:(Xn + 1),

as shown earlier in this chapter,

Sometimes a subroutine may have more than one exit, the simplest
case being when there is an error exit and a normal exit. Any time a sub-
routine has, say, M exits, the M-1 expressions after the calling-sequence-
pathfinder branch expression must be simple pathfinder branches to rou-
tines which handle these extra cases. This is to ensure that the extra

returns comprise full words in all cases. On the 7030, pathfinder

branches comprise full words, while most other branches do not. For exam-
ple, suppose "MATINV" is a matrix inversion routine which has two exits,
the first an error exit if the matrix is singular, and the second, a nor-
mal return where the inverse has been computed. The calling sequence

would then appear as follows:
(#P,MATINV: AD(gW): AE($W)), ($P,ERR),...(computation proceeds)

where "AD" is the square matrix of which the inverse is desired, and "AE"
is the block where the inverse is to be stored. "ERR" is a routine which
handles tne erroneous case when the matrix is singular. The error return

is marked by the full-word pathfinder branch to "ERR." The subroutine

-106-

exits to the error return by the entry

(x + 3),

and to the normal return by the entry
(Xn + 4),

" is the index register containing the pathfinder contents.

where "X
n
Another example of a "calling sequence" with several returns is

the transfer table. A transfer table is essentially a calling sequence

made up entirely of pathfinder branches, each representing a branch to an
alternative subroutine. Which entry of the transfer table is used de-
pends on the value of some quantity, either a parameter or a computed

value. The following example illustrates the usage of a transfer table:

Iltse,Ln, B
=1 lese,sa,
=1 l(3gp, s8),
> ($P,SC),
=1 |csp,spy,
B
($P, SE),
=1 |se, sp,
I l] I_ Ll.X3,X3=X3+GM,(X3+|), ‘ll l I
[

"GM" may take on one of the values 0, 1, 2, 3, 4, or 5, and depending on
this value, one of the pathfinder branches to the routines "SA," "SB,"

etc., is executed. 1In this case, as in every case where a subroutine

-107-

has more than one exit, the various alternative returns contain pathfin-
der branches.

Addressing calling sequence word entries from within the subroutine

using them is done by using the symbol “"$Z" modified by the pathfinder in-
dex register and a parameter algebra expression. An additional modifier
expression may be separated from the first by a comma, to make it possible
to extract either the "$WC" or "$WA" portion of a calling sequence word.
For example, consider the matrix inversion routine whose calling sequence

was given in the previous section:

(¢P,MATINV: AD(gW): AE($W)),(#P,ERR),...
In this subroutine it will be necessary to have both the count and the
base addresses of these matrices in index registers in order to proceed.
We shall also need the square root of the count of the matrices to show
the row and column size., This can be done by the following sequence of

instructions:

I | MATINV, X5, X1=8$Z(X5+1, $WC),

|
X2= $Z (X5+1, $WA), X3 =$Z(X5+2,$WA), l lal ' I
3

X4 = $Z (X541, $WC). $CA. $R.$CA,...

NOTES:

1. The pathfinder contents are placed in X5; then the count of
the first calling sequence word, i.e., the count of block
"AD," is placed in X1. We do not worry about the count of
"AE" since presumably it is the same.

2, The base addresses of the blocks "AD" and "AE" are placed
in X2 and X3, respectively. Note that although the "§WA"
modifier can be used, its appearance is not necessary, since
normally an index register is loaded from the "gWA'portion
of a calling sequence word, unless overruled by "§WC."

-108-

3. The count of the block "AD" is converted to floating point,
its square root is taken, and 1t is then converted back to
fixed point and placed in Xk.

Actually, a great deal of work can be saved by constructing the
calling sequence to "MATINV" in a more efficient manner. The above ex-
ample was included only for illustrative purposes; a better way of con-
structing the calling sequence and the first few orders of "MATINV" is

as follows:

I |($P, MATINV: AD(SWC): AD(SWA). AE($WA):1),($P, ERR),

T L T

I | MATINV. X5, X1=$Z(X5+1),

l ’ I ‘ X2:=$Z(X5+2), X3:=$Z(X5+3), ‘ | | ‘ l

X4:=$Z(X5+4),...

The same index registers are loaded with the same quantities ("I" is the
row or column dimension of "AD"); the only difference now will be that

the exit from MATINV to the error return is:

(x5 + 5),
and to the normal return:

(x5 + 6),

In general it is good practice to make calling sequence words as simple

as possible, even if more space is consumed, since the manipulations may

be greatly simplified and therefore a less probable source of error,
Subroutines with variable-length calling sequences can also be con-

structed by the programmer, either by placing the calling sequences on

-109-

"K" cards or, with more care, placing them (as above) on "I" cards.
Some further examples of this are contained in Chapter 8, pages 176-183,
and will not concern us here.

Usage of the'$D" blocks. The twenty-seven "gD" symbols ($D,

$DA,$DB,+ss,PDY,$D2) permit different formuls sets to share the same
set of symbols, which, however, can unambiliguously be assigned different
values, addresses, and lengths in each formula set in which they are
used. Generally "gD" symbols are specified in formuls set subroutines
which are to be used by several different programs, in order to avoid
using regular alphabetic symbols and thus running the risk of having
symbols which may conflict with some of the symbols used by a particular
code containing the subroutine,

One formula set cannot reference, either directly or indirectly,
the "gD" blocks of another formula set. Thus a subroutine can safely
use its "$D" blocks for necessary constants and/or temporary storage,
without the fears that the constants will be destroyed by another rou-
tine and that its own references to these blocks will destroy another
routine's data.

"$D" symbols may participate in algebraic expressions like
alphabetic symbols, with the following exceptions:

1. The modifiers "gW" and "@WP" are not allowed follow-
ing a "gD" symbol.

2. The modifiers "$WA" and "$WC" are allowed only in im-
medigte index arithmetic expressions involving the
"$D" symbol.

3. "$D" symbols must never occur in calling sequences;

-110-~

they cannot be distinguished from the "SXXX" calling
sequence entry,

4, "gD" symbols may not appear in parameter algebra
expressions.

"dD" blocks are defined on "I" or "L" cards much the same way as
data blocks are defined on "D" cards, but with considerably more restric-
tions. Definition of "§D" blocks on "L" cards is discussed in Appendices
2 and 3 in connection with longhand instructions. On "I" cards, the de=-
finition of "$D" blocks must occur immediately after the entry of the
name of the formula set in which they are used, as follows:

I|FSNAME.Xn,..."$D" definitions ...,

eee Code continues <.

Thus all "#D" symbols used in a formula set must be defined between the
entry of the formula set name and the first algebraic expression in the
code. Symbolically, "$D" definitions may take on one of the following

forms (where X represents any letter of the alphabet or a blank):

1. $DX = N, where "N" is a fixed or floating point literal
or a parameter algebra expression. This is equivalent
to the definition and loading of an array of length one
discussed at the beginning of Chapter 3.

2. $DX(P), where "P" is a parameter algebra expression.
This entry sets aside a vector of length "P" and assigns
to it the symbol "gDX."

3, $DX(P1,P2,...,Pn), sets aside an n-dimensional block of
length PU*P,¥...¥P and assigns to it the symbol "$DX."

be @DX(P) = Qp,004Q,, Or $DX(P;,¢0e,P,) = Q;,0.0Q;, both de-

fine and load the vector or array specified. The"Q, " may
take on only the following forms: fixed point literal,

-111=-

floating point literal, parameter algebra expression, set

words to zero expression "(Z)P," or skip words expression
"(S)P. 7"

5. *@DX = SYMB@L, where "SYMB@L" represents some alphabetic
symbol previously defined on "D" cards. This is the fa-
miliar "equivalence" feature, making the "$DX" block spe-
cified equivalent to the block named by "SYMB@L) Other
features of data entry, such as interpolations, multiples,
repeats, double~storing, etc., are not allowed in the en~
try of "gD" blocks. The equivalence feature, however,
permits sophistications like this where necessary.

*IVY handles "gD" blocks as follows: when a formula set name (iden-
tified as such by its previous occurrence on a "D" card) is encountered dur-
ing assembly, the "$D" control words are set to zero. If definitions of
"$D" symbols then follow the formula set name, control words are constructed
for the blocks defined, in the same manner as is done for symbols on "D"
cards, space is allocated, and loading (if any) is performed. The control
words thus constructed are now used in the assembly of the formula set to
compute the proper addresses for instructions which refer to the "$D" blocks.
Each formula within the given set thus has common access to the "$D" blocks
defined for this set, but no formula outside the set can reference these
"gD" blocks.

For example, let us consider a formula set which consists of a matrix
multiply routine similar to that considered above, page 99. Let us call
the routine MATMPY. Its function will be to multiply the two matrices "MA"
and "MB" (the first of which has dimensions I,J), and place the result in

"MC." We shall define the calling sequence as follows:

($P,MATMPY: MA(@WA):MB($WA):MC($WA):I:J),

A routine which will perform the required matrix multiply is:

=112~

-

MATMPY. X4, $0(5), $DI=XI, $D2 = X2, $D3= X3,

Xiz1,%X2=1, X3=1,80(4,A)=$Z(X4+4) % $Z(X4+5),

$D(5,A) = $E(X4+4)x%2

AlL3=$Z(X4+3), A2.1 = $Z (X4+2), A3.1=8$Z (X4 +1),

LI, $Z (X3+A1) =0

L2, SZ(X3+A)) =SZ(XI+A2) #SZ (X2 +A3)+$M,

Xli=XI+$2(X4+4), X2:=X2+1,

(L2) X1 - $D4 = ZL, X3:=X3+1,

(L3)X3 - SD5 =G&, XI=XI-$D4+1,

(LA)XI—$Z(X4+4) =GZ, Xi=1,

(L),

L4, X2=X2~-$Z(X4+5),(L1),

= -

Pl
NOTES:

1.

2.

3

L3, X1z $D1, X2=8D2, X3= $D3, (X4+6),

The block "$D" is defined as being five words long.

X1, X2, and X3 are stored in the first three of

these words. It is assumed that "MATMPY" is a for-

mila set name.

I*J and I¥*2 are computed as in the previous example,
and "A" is specified since the arithmetic is ambiguous.
Floating point and Boolean numbers can be entered

in a calling sequence.

Examples of "store address" expressions.
addresses of "MA," "MB," and "MC" are picked up from
the calling sequence and stored properly.

-113-

The base

b, Matrix "MC" is evaluated.

5. Index registers are altered and conditional branches are

performed.

1tats

dynamic modification is desired.

must be specified in all cases where

6. X1, X2, and X3 are restored and exit from the subroutine,
to (X4+6), is performed.

Some final notes on the organization of instructions. The block

diagram below should serve as an illustration of how a typical IVY code

should be organized:

FORMULA SET
|

} !

FORMULA SET
2

FORMULA SET
N

-

FORMULA FORMULA
2 na

FORMULA
L

' p—t
Iﬂntries l IL-entrlesl

FORMULAS

L-entries
for each
formuia

FORMULAS

L-entries
for each
formula

"Horizontal" branches are allowed between formuls sets, formulas in the

same set, and L-entries in the same formula.

~114-

"Wertical" branches are al-

lowed between a formula set and its formulas, and between formulas and

their I~entries. "Diagonal" one-way branches are allowed between

formulas and formula sets, and L-entries and formula sets or formulas in

the same set. This diagram is a summary of all that has been said pre-

viously on the hierarchical organization of an IVY program,

*Before assembly, formula sets are written on a tape under control
of an "A" card. Each formula set may be written separately, or a number
of formula sets may be written together, as desired. The entire code
may be assembled at one time, or the various portions may be assembled
when they are needed. Even a code which contains too many instructions
to fit a given machine may still be assembled and executed a package at
a time. Practical examples on the usage of these features are included
in Appendix 1.

The execute instruction. The execute instruction is the only entry
allowed on "I" cards which has not yet been discussed. This instruction
is an alternative way to cause IVY to transfer control to an assembled
code without using the "X" card. The execute instruction may appear as
the very last statement in a formula set, and when encountered by the
assembly program, it causes IVY to give control to the formula set or

to a formule in the set Jjust completed. The format is as follows:

, ¥E+SYMB@L,

where "SYMB@PL" represents the name of any previously converted formula
set, or of a formula in the formula set which has just been assembled.

*Summary. The purpose of this chapter has been to introduce the
programmer to the various IVY branching conventions and to the organi-
zation of an IVY program, and in ccnrection with this, such topics as
calling sequences, transfer tables, the manipulation of calling sequence
words, the "gD" symbols for subroutine data, and the execute instruction.
Our discussion of the IVY algebraic language is now complete except for
the coding examples in Chapter 8. Table IV summarizes the types of IVY
branches and entries discussed in this chapter and Chapter 4.

-115-

Y

be

Ce

d.

f.

Ee

2,

d.

Co

t,

TABLE IV

IVY BRANCHING CONVENTIONS

Types of entries:

ENTRY

»X (A,B),

L
s

MEANING

Index loop entry

Local or L~entry

Local or L-entry
subroutine

Formila name
Formula subroutine
Formuls set name

Formulas set subroutine

Types of branches:

BRANCH

(X)),

(L),

» (L M)
Algebra = C,

,(sP,Ln),
,(FgRM),

:(F¢RM’M)’

Algebra = C,

TYPE

End of index loop

Unconditional L-branch

Conditional L~branch

Pathfinder L-branch

Unconditional branch
to formula

Conditional branch to
formula

-116-

TYPE OF
PAGE BRANCH NEEDED
92 2=8,¢
97 2-b, 2-c
101 2-d
102 2e,2-f
102 2-g.
104 2-h, 2-i.
104 2-3
TO ENTRY
PAGE OF TYPE
92 1-a
97 1-b
98 1-b
101 1-c
103 1-d
103 1=-d

e

he

i.

Je

k.

BRANCH
,(#P,FgRM),
»(Fs),

» (FS,M)
Algebra = C,

)(¢P’FS)’

;(Xn + 1),

or
,(Xn + N+ 1),

TABLE IV (Continued)

TYPE
Pathfinder branch
to formuls

Unconditional branch
to formla set

Conditional branch to
formula set

Pathfinder branch to
formula set

Subroutine exit

PAGE

103

104

104

104

101

Subroutine exit if path- 106

finder branch followed
by N calling sequence
words

-117-

TO ENTRY
OF TYPE

1-g

return to 2-4,
2-%, 2"'3

CHAPTER 6

IVY SUBROUTINES

Any of the IVY "#" subroutines deseribed in this chapter may be en-
tered by means of a pathfinder branch from the coder's program; In some
cases the routines require a variable length calling sequence; when this
is so, it is to be understood that the calling sequence can occur either

in the code, as follows:

,(#P,#RAUT: Calling sequence),

or on a "K" card, in which case the symbol representing the calling se-

quence block must appear in the instruction calling sequence, as follows:

,(#P,#RPUT: SYMBPL (gWP))
The two techniques are equivalent provided that the two calling sequences
are the same., Thus, when in the description of a particular "g" routine,
calling sequence entries are described, it is understood that these en-
tries can appear either between colons after the pathfinder branch on the
instruction card, or between colons on a "K" card which is addressed by

a single calling sequence word entry after the pathfinder branch.

-118-

A. The loading program. The loading program "$ID" has no calling

sequence and 1s entered by a simple pathfinder branch:

,(#P,#1ID),

"#ID" is the program which reads in cards from the on-line reader or the
off-line input tape, recognizing and treating all the various types of
IVY cards described in Chapter 2. If an end-of-file condition occurs in
the reader or on tape, IVY halts after printing an appropriate comment.
The use of the loading program is twofold:

1, To read in new data, on “"E" cards, to read in and/or assemble
new code, to read in an "@" card and halt temporarily, etc.
In this case control is returned to the expression immediately
following the pathfinder branch to "$ID" in the programmer's
code when an "X" card with columns 2-72 blank is encountered,
or to some formula set if an "X" card containing the name of
this formula set is encountered. Control may also be returned
if a "$E" entry is encountered in a formula set being con-
verted, as described in Chapter 5, page 115,

2, To exit from a program when its execution has been completed,
The last executable instruction in any IVY code should be a
pathfinder branch to "$ILD," in order to read in any program
stacked behind the current one, or to halt if no such program
exists,

B. The assembly program. The assembly program "$AP" can be entered

internally to avoid reading an "A" card through "$LD." However, under
programmer control "$AP" will read only, and will not write on tape. The
calling sequence for “"gAP" is:

(¢P,PAP: Calling sequence),
where the calling sequence may occur in the parentheses or on a "K" card,

provided that in the latter case only the name of the "K" card and the

«119-

modifier "$WP" occur in the parentheses following the pathfinder branch
to "$AP." The calling sequence to "4AP" may consist of any number of en-
tries, each consisting of one calling sequence word, as follows:

$RDN,F

where: "gRD" means "read"; "N" is a hexadecimal expression

for the tape number; and "F" is a parameter algebra expres-

sion for the file number on tape "N." If N = O, the systems

tape (equivalent to N = A) is used.
Any number of files on the tape may be read and converted using "SAP";
however, IVY will give up control to any formula set which ends with an
execute statement, as mentioned at the end of the previous chapter.

Teble V shows the correspondence between the tape number "N" and
channel and tape numbers on the IBM 7090. These correspondences hold
for both "gAP" and "gTP." Also noted are the tapes which are reserved
for the various types of off-line output. These tape numbers may not be

used by "$AP" or "$TP" (see next section) unless precautions are taken

to protect the output of previous jobs which may be on these tapes.

TABLE V

CORRESPONDENCE BETWEEN IVY TAPE NUMBERS AND 7090 TAPE NUMBERS

IVY TAPE

NO. 7090 RESERVED FOR USE (IF ANY)

0 A2 Assembly, if no other specified
1 Al IVY system (high density)

2 A5 None

3 B3 None

L Al None

5 B1 None

6 B2 None

-120-

TABIE V (Continued)

IVY TAPE

NO. 7090 RESERVED FOR USE (IF ANY)

T A6 None

8 B6 BCD Input, for reading decks off-line

9 A3 BCD Output (print & punch, high density)
A A2 Assembly, if no other specified

B B4 None

C B5 4020 Output (plot & print, low density)

On the IBM 7030, tape numbers 1-F can be specified. However, no
list of corresponding absolute channel and tape numbers can be given
since these are assigned by IVY on the basis of available tapes and the
requirements of other programs. In general, the programmer or operator
will be notified of these assignments via the console typewriter in ad-
vance of the time they are used by the program, so that tapes may be pro=-

perly mounted and the dials set in plenty of time,

C. Tape manipulation program., "$TP" is a program allowing com-

plete flexibility in manipulating binary (i.e., odd parity) tapes. Its
features include reading, writing, spacing forwards or backwards, posi-
tioning, setting density, rewinding, unloading, writing end-of-file, and
testing the current tape, all under control of various calling sequence
words. The calling sequence is designed in such a manner that each call-
ing sequence word, as a rule, represents one simple mnemonic instruction
to a partlcular tape unit.

*For the benefit of those who are not familiar with IBM tape opera=-

tion, a short summary is included here. The shortest block of informa-
tion written on a tape is a record, consisting of one or more words of

-121-

data, and separated from other records by a gap in the tape called the
end-of-record gap. Records, in turn, may be gathered together into

filégf files are separated from one another by a record consisting of
a special character followed by a long gap on the tape, called the end-
of-file gap or simply the end-of-file., In addition, IVY marks the end
of the tape with a special record called the end-of-tape record, con-
sisting of one word containing special information and an end-of-file.

Each record read or written by "$TP" must be preceded by an iden-

tification word, called the "ID." Each record in a file must have an ID
different from the other records in the same file, in order to facili-
tate searching procedures. When "$TP" is searching for a record with a
particular ID, it searches only the file in which the tape is positioned
when this record is requested. In no case will "§TP" ever read beyond
the end-of-tape record, or write beyond the end-of-tape reflective strip.

The calling sequence to "$TP" may consist of any number of entries,

each of which may be any one of the following:

1. @HDX, where "X" is a tape number in hexadecimal, 1 < X < C on
the 7090, 1 < X < F on the 7030. This causes tape X" %o be
set to high density (556 bits per inch).

2, PLDX. Tape "X" is set to low density (200 bits per inch).

3., PRWX. Tape "X" is rewound to the load point. (Identical to
performing manuallythe operations of pressing the "reset,"
"load rewind," and "start" buttons on the tape unit.)

4, PULX. Tape "X" is rewound to the load point, the upper head
assembly is raised, and the tape is removed from the vacuum
columns. (Identical to performing menually the operations of
pressing the "reset," "load rewind," and "unload" buttons on
the tape unit.,)

5. PEFX. Write an end-of-file mark on tape "X."

6. PETX. Write the end-of-tape record on tape "X," and back-
space the tape to the beginning of this record.

7. $BBX,P, where "P" represents a parameter algebra expression.

122~

This instruction causes tape "X" to backspace through “P"
blocks or records, where an end-of-file is counted as a
record., Error indication is given if "P" is large enough
to cause the tape to attempt to backspace through the
load point, If P = O this instruction is ignored.

8. PBFX,P, Tape "X" is backspaced over "P" files, where the
count "P" includes the current file. The tape is then po-
sitioned to read the first record of the file located.
Error indication is given if "P" is large enough to cause
the tape to attempt to backspace through the load point.
If P = O,this instruction is ignored. If P = 1, the tape
is set to read the first record of the current file.

9. #FBX,P, Tape "X" is spaced forward over "P" blocks or re-
cords. Error indication is given if "P" is large enough
to cause the tape to attempt to space forward through an
end-of-file, or if the tape is positioned at the end-of-
tape record. If P = C, this instruction is ignored.

10. @#FFX,P. Tape "X" is spaced forward over "P" files, where
the count "P" includes the file in which the tape is cur-
rently positioned. An attempt to space beyond the end-of-
tape record will cause an error indication. If P = O,
this instruction is ignored.

11. @RDX,AD(gWA)+P, where "AD" is any programmer symbol and "P"
is a parameter algebra expression, This entry may occur
only at the end of a calling sequence. The ID of the re-
cord at which tape "X" is positioned is compared to the
contents of the location specified by "AD(#WA)+P," and if
the two are equal, $CS1 is set to 1. If they are not
equal, SCS1 is set to 0. The tape remains positioned to
read this record.

NOTE: The next two entries each consist of a pair of calling
sequence words.

12, PRDX,AD(#WA)+P: AE($WP). "gTP" attempts to find the record
in the current file on tape "X" with ID equal to the con-
tents of "AD(@gWA)+P," and if successful, reads the record
into block "AE." The current file is scanned twice in an
attempt to find the record with the specified ID, so to
save time the programmer should attempt to position the
tape at the proper record before giving the "read" command.
If the proper record cannot be found, error indication is
glven and "$TP" relinquishes control to IVY, which selects
the card reader or input tape in an attempt to find the

123~

next job. "$TP" does not return control to the programmer's
calling sequence, since the lost data may have been essen-
tial to the program. The block "AE" must have a non-zero
count and hase address, and the count of the record read from
tape may not exceed the count of "AE.," Otherwise, error in-
dication is given and IVY tekes control. (Using option 11
plus the proper spacing instructions the programmer can easily
locate the proper record before reading it.)

13, @WRX, AD($WA)+P: AE($WP)., A record is written on tape "X,"
starting at the point where the tape is positioned, and con-
taining the ID specified by "AD($WA)+P" followed by the con-
tents of block "AE." If the physical end-of-tape is sensed
at any point in the writing of this record, the tape is back-
spaced to the start of the record, an end-of-tape record is
written, and the machine halts after printing a comment to
this effect. When a new tape has been mounted, and "start"
(7090) or "console signal" (77030) has been pressed, "$TP"
will write the record on the new tape. The programmer should
note that when a new record is written on a tape containing
other information, any of the old information beyond the new
record will become unreadable. Thus, the new record should
be written after any information that is still needed.

14, @PP. This calling sequence word causes parallel operation
to take place during all the tape operations specified in
subsequent calling sequence words until "gsS@" is encountered
(see below)s By parallel operation it is meant that the tape
input-output will proceed in parallel with computation. This
entry should be used only in those cases where subsequent
computations do not depend on the results of the operation,
e.g., when subsequent computations do not address a block
which is being read in or written, etc. Care should be exer-
cised in the use of this entry, since it makes detection of
RTT and end-of-tape somewhat more difficult.

15 ¢S¢. This calling sequence word specifies serial operation,
i.e., each input-output instruction is completed before the
next is initiated, and all operations are completed before
"4TP" returns control to the programmer's code. If neither
"gsg" or "gPP" is specified in the calling sequence, serial
operation is always performed.

¥Detection and treatment of errors by "$TP." Two types of errors
are detected by "$TLP': Errors arising from the tape unit itself (re-
dundacy errors), and programming errors. These are treated as follows:

-124-

Te

2.

Redundancy on writing: A backspace is performed and an attempt
is made to rewrite the record. If no error is detected on the
second writing, "$TP" proceeds without error indication. If a
second redundancy error is detected, error indication is given,
a gap 1s erased on tape, and a third attempt is made to write
the record. If this attempt is still unsuccessful, the machine
stops after printing a comment that the tape is defective and
should be replaced. After the tape has been replaced, press
"start" or “console signal" and the program will proceed.

Redundancy on reading: At most ten attempts are made to read
the faulty record. If all are unsuccessful, an error indica-
tion is given and control is surrendered to IVY, which selects

the card reader or input tape in an attempt to find the next
jObo

Programming errors include such things as attempting to space
the tape too far forwards or backwards, asking to read a re-
cord which is not in the current file, incorrect calling se-
quence words, etc. In general, spacing errors wilill cause an
error indication, but "$TP" will proceed to the next calling
sequence word. Errors affecting actual reading and writing
operations will cause error indication, and "$TP" will surren-
der control to IVY, since it is assumed that the tape input or
output operation is vital to the code, and that the code can-
not run without it. Some errors, e.g., end-of-tape detection,
cause a halt; when the condition has been corrected, pressing
"start” or "console signal" will cause "$TP" to proceed. "§TP"
indications are included in the list of IVY error indications.

Some examples of "$TP" calling sequences: Included also
is the action "§TP" takes under various conditions.

EXAMPIE NOTE
(#P, #TP: £SP),.e. 1
(§P,$TP: PHD3: $WR3, GE(BWA)+1: FXNTZ(gWP): 2

#BB2,3: $RD2, TH(FWA)+2)

s : gPP: #RWS: L,FN(#WA)+1: AD(EWP): 3
(#e ;ﬁ; gﬁ(mﬁl;é: g?%WP)WM; FN($5XI))+3:
AF(#WP): PEF5)

(¢p, $TP: #FFB,3: $FBB,2: $RDB, RSN(gWA)+2: b
AXX(gWP))

-125..

NOTES:

2.

e

D.

This calling sequence entry simply causes the machine to wait
until all input-output channels containing tape units have
completed their current operation. An entry of this type can
be used before operations affecting a block being read or writ-
ten in the parallel mode are performed, so that a block still
engaged in input-output transmission will not be altered be-
fore the transmission is completed.

In this entry, block "FXNTZ" is written in high density on
tape 3, after which tape 2 is backspaced two records and the
ID of the new record is checked., It is assumed that the den-
sity of tape 2 has already been set, Note that the density

of a tape unit can be set internally using calling sequence
words, or externally by pressing a button on the tape unit.

In any event, once a tape is set to a certain density, this
setting should not be changed. A given tape unit should always
be read, written, backspaced, etc., in the same density.

The blocks "AD," "AE," and "AF" are written on tape 5, then an
end-of-file is written. This is all done in the parallel mode,
so that the operations may not be complete when "$TP" returns
control. An entry of the type discussed in note 1 should be
used before any attempt is made to alter the blocks "AD," "AE,"

and 11 1"

Tape "B" is spaced forwards 3 files plus 2 records, and block

"AXX" is then read., It is alwasys a time-saving procedure to
position a tape properly before a record is read.

The switch test program. "#SW," has no calling sequence and

is entered by a simple pathfinder branch

(#P,gsw),

The purpose of "@SW" is to test the six sense switches and read the keys

on the 7090 console, and to read the settings of the various buttons,

keys, and switches on the 7030 console. The information gleaned from

the reading of these console devices is set up in the."ﬁcs" block in

-126-

a format wnican can be easily tested internally.

The first six binary

switches on the 7030 console are treated the same as the sense switches

on the 7090 console to provide analogous input.

follows on the two machines:

TABIE VI

"#Cs" BLOCK SETTINGS BY "gsw"

"SCS" WORD CONTENTS, 7090

$Cs1 sense switch 1: 0 if
off, 1 if on

gcs2 sense switch 2

gcs3 sense switch 3

gcsh sense switch 4

#cs5 sense switch 5

#csé sense switch 6

gesT switches 1-3 in
binary

#cs8 switches 4-6 in
binary

#cs9 switches 1-6 in
binary

#Cs10 console keys S,1-35

gcs11 zero

¢CS12 zero

CONTENTS, TO30

binary switch O

binary switch 1
binary switch 2
binary switch 3
binary switch b4
binary switch 5

switches 0-2

switches 3-5

switches 0-5

binary keys,0-63
numerical switches

first half word:
binary switches,

second half word:
digital potentio-
meters,

-127-

"dcs" is set up as

TYPE OF WORD

fixed

fixed

fixed

fixed

fixed

fixed

fixed

fixed

fixed

Boolean

Boolean

Boolean

Thus we note that $CS1-$CS9 are analogous on both machines if we inter-
pret the first six binary switches on the 7030 as equivalent to the

T090 switches, Similarly, the last 36 binary keys on the 7030 are equi-
valent to the 36 console keys on the 7090, The same sequence of instruc-
tions can be used on either machine to handle these 36 settings. If the
other settings on the 7030 are used, one can retain compatibility by cod-
ing an alternative routine under the control of "$I5," the machine num-
ber indicator. Or a program can be coded to test the 7030 settings with-
out worrying about incompatibility with the 7090, if desired. Such a
code, of course, will not function properly on the 7090 if compatibility

is required.

E. The test trigger routine, "#TT," is used to test the status of
various internal machine indicators (ac overflow, divide check, etc.,
on the 7090, and various maskable indicators on the 7030). After the
test all indicators are turned off. Certain words of "$CS" are set ac-
cording to the status of the indicators, and if desired, a diagnostic
comment is printed on-line., Also, optionally, the programmer can cause
"$TT" to give up control to IVY if any of the indicators are on. IVY
contains various internal programs to handle cases of floating point
overflow or underflow, so in general the trigger settings will reflect
only the results of fixed point operations. The trigger settings, and

the resulting settings of "§CS," are as follows:

-128-

TABLE VII

"dcs" SETTINGS BY “"gTT"

"des” TYPE OF
WORD 7090 TRIGGER 7030 TRIGGER WORD
#Cs1 AC overflow: 1 if on, 1C,PF,LS: 1 if any fixed
0 if off is on
#cs2 MQ overflow: 1 if on, PSH: 1 if on, O fixed
0 if off if off
#CS3 Divide check: 1 if on, ZD: 1 if on, O fixed
0 if off if off
#Csl Negative square root: IR: 1 if on, O fixed
1 if negative, if off
0 if not
#CS5 Zero always indicator word: Boolean
contents on entry
t0 H¢TT"

Note that on the 7030 the contents of the entire indicator word are
placed in $CS5 so that individual indicator bits may ve tested. The in-
dicator register is always set to zero on exit from "gTT."

The calling sequence to "$TIT" is as follows:

(#P,7T: By, AD(BHP): £1), 00

where "#N" means "no print," "4P" means "print a diagnostic comment
headed by the symbol 'AD' and containing a list of the indicators which
were on"; "$R" means "return control to the problem program,” and "gI"
means "return control to IVY if any of the tested triggers were on."

Note that "$TT" always has a fixed-length calling sequence two words long.

-l 29..

Only the format of these calling sequence words is variable. This calling
sequence, being fixed length, cannot appear on a "K" card.

F. The octal dump program."$@D" is used to obtain a dump in octal

of any or all of the data blocks or longhand formula sets used in a pro-
gram. A decimal dump of data, of course, can be obtained using the print
program "$PR" described in the next section. The octal dump appears off-
line on tape 9 unless console key 35 (7090) or binary key 63 (7030) is
down, in which case the dump will be printed on-line. The calling se-
quence to "$@D" may consist of one word (if a dump of all data regions
and longhend formula sets is deslred) or of any number of words if a
dump of only certain blocks is desired. The one-word entry for dumping

all blocks is:

($P,#PD: BDA), o .

where "$DA" is mnemonic for "dump all." If only certain blocks are to

be dumped, the format of each calling sequence word is

ooe: SYMBPL(EWP): v.o

where "SYMBAL" is the name of any data block or longhand formulas set.
The dump consists of the following information:
1. The symbol for the block whose dump appears below;

2. A number of lines consisting of the contents of the block,
in octal, each line being constructed as follows:

a. A five-digit octal number giving the location of
the first word on the line on the 7090, a six-
digit number on the T030;

b. A string of octal numbers:

-130-

(1) eight numbers of twelve digits each are printed on
the T7090;

(2) eight nunmbers each consisting of eignt octal digits
plus two hexadecimal digits in the standard format
(i.e., four full words) are printed on the T7030.

G. The print program. "$PR" is used to print numbers in decimal

in a wide variety of formats. This printing can be done, in a limited
amount, on-line; or off-line on tape 9 for later printing on a peripheral
device; or off-line on tape C for producing a listing on microfilm via
the SC-4020 microfilm device. The format statement controls not only
the format of individual numbers within each block printed, but also the
arrangement of vectors and blocks on a page, the printing of column and
row headings, remarks, etc. The "#PR" calling sequence has a large num-
ber of calling sequence words which will be explained in turn.

1. Spacing. The simplest calling sequence word entries control
the spacing of the page. Normally single spacing takes place between
lines and double spacing between blocks, If other spacing is desired be=-

tween blocks, one or more of the following calling sequence word entries

are used:
csw OPERATION
gtp Restore page (on-line)
gop Half-page skip (on-line)
#DP Double-space printer (on-line)
1T Restore page (tape 9)
#oT Half-page skip (tape 9)
gDT Double-space page (tape 9)
#1M "Restore page" (advance film =
tape C)

-131=

CSwW OPERATION

oM "Half-page skip" (microfilm — tape C)
DM "Double space" (microfilm — tape C)

2. Printing of remarks. Remarks may be printed, without the

benefit of a format statement, by use of one of the following calling

sequence word entries:

#P,REM($WP) print remark on-line;
#T,REM(gWP) write remark on tape 9;
#M, REM($WP) write remark on tape C for microfilm;

where "REM" represents a symbol for any remark. Remarks can also be
printed, if desired, under the control of a format statement as de-
scribed below.

3« Format statements. Format statements are remarks constructed

in a particular manner to control the printing of arrays of numbers and
"comment" remarks, as well as giving various other information about
the format of the printout. The calling sequence entry for a format
statement is as follows:

#F , FERMAT(WP)

where "FYRMAT" is the name of the desired "format" remark statement.
The format named then holds for all the following information until it
is exhausted, a term which will be explained below.

The first field, and only the first field, of a remark state-

ment must contain one or more control characters followed by a comma;

-132-

the general appearance of this part of a format statement is as follows:

R|FPRMAT = c10203...cN,...

where "FPRMAT" is the name of the statement and the "Ci" are control

characters. Each "Ci" may be any one of the following:

H B o B 3 W

0]

or blank

print on-line.

print off-line (tape 9).

print on microfilm (tape C).

print column indices on vectors or arrays.
print row indices on vectors or arrsys.
print vectors and arrays in line format.

print fixed point numbers as integers re-
gardless of format statement.

print fixed point tags of double-stored
numbers in octal.

ignored.

The functions of the characters”c," "R," "L," "F," and "g"

will be discussed somewhat later in this section. Of the characters

"P," "T," and "M," only one may occur to specify the mode of printing

desired. If more than one occurs, the last one in sequence will take

precedence.

At least one of these characters must occur; if none

occurs, "T" will be assumed. The characters "T" and "M" can be cver-

ruled temporarily by console key 35 (7090) or binary key 63 (7030).

If this is down,the next block encountered will be printed on-line re-

gardless of the format statement. If key 35 is up, "T" or "M" will

again take control. We thus note that this particular key is always

-133-

reserved to specify on-line printing; in general its use should be re-
stricted to emergencies to save machine time.
To print a remark under control of a format statement, the fol-

lowing two calling sequence words must be used:
#F,FPRMAT(gWP) : REMARK(@WP)

The remark will be printed on-line, off-line, or on the microfilm tape
according to the setting of the print key and to which of the characters
"P," "T," or "M" occurs in the format statement. For example, if "FPRMAT"

and "REMARK" are defined as follows:

P, #p¢

THIS IS AgYTWP LINE REMARK.Ags

R | F@RMAT

R |REMARK

the above two calling sequence word entries will cause

THIS IS A

TWP LINE REMARK.

to be printed on-line. ("PPR" automatically detects the "$@" and causes
the printer to space at that point).

L, Printing numbers and arrays of numbers.

a. The "C," "R," amd "L" controls. As remarked sbove,

"C" and "R" occurring among the control characters of a format statement
cause column and row indices, respectively, to be printed with arrays of

numbers. The first column index, if any, will always be replaced by the

134

name of the block which is about to be printed; the rest of the column
indices and the row indices ascend in sequence. These indices appear

as follows:

row

column = NAME 2 3 L4 .,. N

W o -

The column indices are always properly centered over the appropriate
column,

If "L" is not given, the so-called normal form of printing
occurs: namely, one«dimensibnal arrays or vectors are printed in columns,
and multi-dimensional arrays are printed in matrices such that the first
index varies along columns. The following diagram illustrates the nor-

mal form of a vector and a two-dimensional array:

VECTOR TWO-DIMENSTONAL ARRAY
A1 B1,1 B1,2 B1’5 eoe B1’k
A2 B2,1 B2,2 32’3 vee B2’k
A B B B ees B_,k
3 3,1 3,2 3,3 3’
A B B B, eee B
n 3,1 3,2 J,3 Jsk

-135 -

N-dimensional arrays (where N > 3) are printed as two-dimensional
matrices, In each matrix the last N-2 dimensions are constant, and the
Tirst index varies along columns as above, The matrices are printed in
such an order that the first of the last N-2 dimensions varies most ra-
pidly from matrix to matrix, the second dimension less rapidly, .., the
Nth dimension least rapidly. Double spacing always occurs between the
matrices of an array. Thus, for example, if array "C" has dimensions
(I, 3, K, Lyeee,P) and Mk, P represents one of its two-dimensional

000y

matrices, these matrices are printed in the following order:

M

1,1)’0.,1
double space

M2,1’..',1

double space

I‘Lk,‘],ooo,-l

double space

I

double space

Mo 2...,1

double space

Mty eee,D

double space

-136-

Mk'*‘],l,ooo,p

double space

Mg1,1,...,P

double space

ML, eee,P

If the rows of any two-dimensional matrix are so long as to exceed the

size of the page (119 columns), the matrix will then be printed as fol-

lows:
B1’1 B1,2 B1’3 e B],i
B2,1 V B2’2 B2’3 e0e Bz,i
B B B, cee B, .
J,1 3,2 Jd,3 J,i

double space

B LN] B

1,141 1,k

B2,i+1 oo e B

2,k

By, 141 **c By

~137-

Since the overflowing portion of the matrix is printed separately, it
can be read easily as an extension of the first portion. Its row in-
dices (if any) are reset to start at 1 and its column indices (if any)
continue from the highest previous value. Thus, if desired, the later
portion of the listing can be cut out and attached to the right of the
earlier portion to give a complete picture of the array.

If an "L" is given in the format statement, the so-called line
form of printing occurs; that is, vectors are printed across the line?
and multi-dimensional arrays are printed so that the first index varies

in rows, as follows:

VECTORS A1 A2 A3 cee AN
ARRAYS B1’1 32’1 33’1 e Bk,1
B B B coe B
1,3 2,3 ‘3}3 k,j
B B B, . eeo B
1,d 2,J 354d k,J

The comments given above about the order of printing of the matrices of
an N-dimensional array and the convention in case the rows of a matrix
overflow the page also apply here.

b, Format control of numbers. The control characters mentioned

above govern only the outward appearance of a listing: the spacing

-138~

between blocks, the appearance of row and column indices, and the order
in which the elements of a vector or array appear across the page. The
remainder of the format statement specifies the exact appearance of each
individual number in the listing. After the control characters have
appeared, any number of fields consisting of five decimal numbers sepa-
rated by periods may occur, each specifying the format for one or more

blocks of data. This appears as follows:

R|FgRMAT = C,CpeeeCys N.S.I.F.E., ete.

"N," "s,"” "I," "F," and "E" are decimal numbers having the following
meanings:

N: The number of blocks of data for which this portion of format
is to be used.

S: The number of blank spaces which precede each number printed
under control of this format statement.

I: The number of integer digits (to the left of the decimal
point) to be printed in the numbers under control of this
portion of the format.

F: The number of fractional digits (to the right of the deci-
mal point) to be printed.

E: The number of exponent digits to be printed.

For example, if "F1" is a format as follows:

R|F1 = P, 1.1.1.7.2, #3¢

and if "B" is a vector of data, the two calling sequence words

#F, F1(gwP): B(gwP)

-139-

will cause the elements of the vector "B" to be printed on-line in a

column as follows:

= Xe XXXXXXXEXX

where "x" represents a decimal digit, " "

"o

represents a blank space,
represents a minus if the sign is negative or blank if positive.

A right-to-left dropout feature operates in the "N.S.I.F.E."
fields. That is, if ".E" is omitted, the number will be properly ad-

justed and printed without an exponent; if ".F.E" is omitted, the num-
ber will be printed as an integer; and if ".I.F.E" is omitted, "S"
spaces will be inserted in the listing "N" times. Any combination of
the numbers "s," "I," "F," or "E" may be zero to work up variations on
this theme.

In general, the "N.S.I.F.E" field holds for all numbers in the
block printed under its control regardless of whether they are fixed or
floating point. However, if "F" appears among the control characters
discussed in the previous section, all fixed point numbers in the block
will be printed as integers, regardless of whether ".F" and ".E" are
zero or not. The number of digits printed will equal I+F+E+2, subject
to zero print control (i.e., lead zeroes are suppressed).

The general calling sequence entry then for printing M vectors

under the control of a single format statement is:
#F,F¢RMAT (#WP): VECT¢R1($WP): VECT¢R2($WP):...:VECT¢RM($WP)

The format statement must be sufficient to print all M vectors; i.e.,

-140-

the sum of the N's in all the "N.S.I.F.E" fields in which at least one of
I, ¥, and E 1s non-zero must be at least M. For example, the following

format will serve to print 7 vectors (or less):
R|F2 = PCR, 3.1.1.7.2, 3.2, 2.1.1.5, 2.2.2.6.1, gg3

To print a string of parameters starting with a given parameter
under control of some format statement, the following calling sequence
entry is used:

$F, FPRMAT(ZWP): $PN, PARAM(@WA)+P

where N < 99 is the number of parameters desired and "P" represents
parameter algebra the result of which must be at least 1. Then the N
consecutive parameters starting with the one in location PARAM(@BWA)+P

are printed in the same manner as a vector.

If the programmer wishes to print the parameters in several
blocks using this single entry, the name "PARAM" must specify the last
of these blocks loaded on "D" cards. The parameter blocks are then
printed in reverse order of their loading, from last to first; the num-
bers in each block, however, are printed in sequence from first to last.

For example, conslder the following format statements and

calling sequence to "$PR":

R|F1 = CRT, 3.2.1.5.2, 2.0.3.2, #38

R|F2

CRPL, 1.1.2.3.1, ggg

and

-1hi-

I|(gP, $PR:gF,F1($WP):MXT(BWP): APX(PWP) :FNTZ(gWP):

| TNPRL($WP) : VITN($WP) : #F , F2($WP) : #P5, PC(FWA) + 1), .0

The vectors "MXT," "APX," and "FNTZ" will be printed in parallel columns

in the format
. XeXxxxxxtxX,

the two vectors "TNPRL" and "VIIN" will be printed in columns parallel
to these in the format

— -XXX.XX,
and five parameters starting with "PC" will be printed across a subse-

quent line in the format
_~XXeXXXtXe

Printing multi-dimensional arrays presents a somewhat more dif-

ficult problem since the first one or two dimensions must be made known
to the print program in order to breek the block up into its correct two-
dimensional sub-matrices. To print a two-dimensional array, or matrix,

assuming a previous format statement, the following is necessary:
$2, MATRIX(gWP):P

where "MATRIX" is the symbol for the block and "P" is a parameter alge-
bra expression for the first dimension. To print an array of three or

more dimensions, the following entry is used:

#A, ARRAY(#WP): P, :P,

where "ARRAY" is the symbol for the block and "P1" and "P2" are

-142-

parameter algebra expressions for the first two dimensions. If these
entires are not used for multi-dimensional blocks, the blocks will be
printed as vectors.

Arrays or vectors (but not parameter blocks) may have been de-

fined as double-stored numbers. If this is so, and one wishes to print

both the "Q" and "T" portion of these numbers, an extra calling sequence
word giving the tag length must be placed immediately after the one nam-

ing the block, as follows:

vector: VECTPR($WP) : €D, P

matrix: #2,MATRIX(#WP): SD,P1 :P,
milti-dimensional

array: ¢A,ARRAY($WP):¢D,P1:P2:P5

where "$D" is mnemonic for "double-store,"

and the parameter algebra
following it is the tag length in bits. The other parameter algebra
expressions are for the dimensions as described above., When double-
stored numbers are printed in this fashion, the tag, in decimal (or
octal if "@" was one of the control characters in the format statement
described on page 133), preceded by the letter "T," occupies the low order
digits of the fraction. Thus, for example, if a double~-stored block
contains a five~bit tag and is printed according to the format
"Ne1.1.7.2," each number of the block will appear as follows:

_ =XeXxxxTDD*xx

where "D" represents an octal or decimal tag digit. The coder should

bear this in mind and adjust the size of ".F" accordingly.

-143.

Under control of one of two other calling sequence words, one can

print only the "Q" or only the "I portion of a double-stored number, if

desired., The calling sequence entries to do this are:

print "T" only:

vector: VECTPR(@$WP) : §T,P

matrix $2,MATRIX(#wP): 8T, P,:P,
multi-dimensional

array: SA,ARRAY(SWP):iﬁT,P.I:PE:P3

(Regardless of the format statement, the tag is always printed as a deci-

mal or octal integer preceded by the letter "T.")

print "Q" only:

vector: VECT@R($WP): $Q,P

matrix $2,MATRIX(#WP): $Q, P, :P,
multi-dimensional

array: #A,MATRIX(@WP): #Q,P, :P: P

1°°2'"3

5. Printing immediate remarks. We have already discussed how to

print ordinary remarks. Immediate remarks, however, differ from ordinary

remarks in that they occur in the format statement itself, and may pre-

cede any "N.S.I.F.E" field enclosed in parentheses, thus:

,(REMARK)N.S.I.F.E,

The characters in an immediate remark may be any legal hollerith charac-

ters, except that parentheses occurring in the immediate remark must be

-4l -

closed, i.e., must occur in the order
(eee)e

Immediate remarks should be reasonably brief (in no case, over 119 charac-
ters long) and are used usually for short headings, etc., and permit a
considerable sophistication in the printout. A pair of examples will
serve to 1llustrate possible uses:

R|F1=P,(PARAM.=) 1.0.1.7.2, B&8
and

I|(#P,BPR: gF,F1(gWP) : gP1,AD(BWA)+1), e e

will cause parameter "AD1" to be printed as follows:
PARAM . ==X ¢ XxXXXXXEXX

The following format:

R|FF=CRT,1.54, (TEMPERATURE) 1.5k,1.1.1.5.2, #3g
and the calling sequence

I|(#p,£PR: gF,FF(ZWP) : #2,AA(FWP) :CE+3), e

will cause the heading
TEMPERATURE

to appear centered in the page above the printout of matrix "AA."

*6, Error detection. "$PR" detects a variety of errors and
prints out a number of diagnositics on-line. Control is always re-
turned to the problem program, however, since the validity of the output
print has no effect on the workings of the program. Some of the more
serious errors are:

a. Attempting to print blocks of numbers with no format
statement;

~145.

b.

d.

Attempting to print blocks with an inadequate format

statement, i.e., one which does not have enough non-
zero ".I.F.E" fields to cover every block specified;

Attempting to print an undefined block, i.e., one for
which the symbol is not in the symbol table, or which
has no address defined;

Attempting to print a block of code.

Other less serious errors, for which no indication is given, are:

8.

H.

Attempting to print both the "Q" and "T" portions of

a double-stored number, when ".F" is not large enough to
include the entire tag and the letter "T," In this case,
printing of the tag is suppressed.

Lost significance, e.g., in a case where ".E" is zero or
missing, an integer part is too large for the ".I" spe-

cified, In this case the integer is printed modulo 101,
Or specifying too few digits for the exponent, in which

case the exponent is printed modulo 10~,

The Punch Program, $PH, is quite similar in usage and con-

ventions to the print program. The calling sequence and formaet state-

ments are simply a subset of those for the print program. "gPH" pro-

duces "R" cards and "E" cards which may be used as input to a future

IVY program. The following differences exist between "$PH" and "$PR":

Te

2.

S

No microfilm option is allowed in "$PH." If the "™M" con-
trol character appears in the calling sequence or in a
format statement, it is replaced with "T." (Note that
cards written off-line for later punching are also placed
on tape 9 with a distinguishing character detected by the
IBM 1401 in the output process.)

If any of the spacing options (e.g.,"#1P," "g2P,"etc.)
occur in the calling sequence, a blank card is produced.
Blank cards are ignored by "gID."

The control characters "C," "R" and "L" of the format
statement are inoperative. Numbers of a block are simply
punched in sequence on "E" cards separated by commas
after the symbol for the block and an equal sign.

<146~

L. Whether or not the "F"control character is present in a
format statement, fixed point numbers are punched as in-

tegers so that the "E" cards are punched properly for
input usage.

5« Remarks are punched on "R" cards (and continuation cards,
if necessary) complete with name, equal sign, and all
necessary "$8" and "$##" characters.

6. Parameters are not punched using the "$PN" convention,
but must be punched as vectors.

7. "gPH" ignores immediate remarks in its controlling format
statements.

8. Double stored numbers are punched in the proper input for-
mat, i.e.,

AD(Q.P) = N1,N2,-o-,AD(T.P) =M My, e

and so on. The "@" flag of the format statement is still
operative and will cause the tags to be punched in octal,
prefixed of course by the "(B)" entry described in
Chapter 3.

Bearing these differences in mind, the programmer can easily punch
data and remarks using essentially the same techniques used for printing.
In fact, the same format statements can be used for both punching and
printing without error indication from "gPH."

I. The microfilm plot program. "#MP" is used to produce output

on tape C which, when used as input to the SC-4020 peripheral microfilm
device, will cause graphs to be produced on microfilm, We have already
seen, in the section describing "§FR," how ordinary output listings can
be produced by this device. Plotting is a somewhat more complicated
business; it is not, however, the purpose of this writeup to describe

the characteristics of the 4020 in detail. Instead, the curious reader

-1 14,7..

is invited to read either the 4020 manual itself or any of a variety of

writeups on the 4020 which are available.

"#MP" permits a wide variety of operations: advance film, select

grid, label grid, write a label horizontally or vertically, plot points

with an option of connecting points with a vector, and generate an arbi-

trary set of axes, This is all done under control of various calling se=-

quence words as described below.

T

2.

To advance film, the following calling sequence word must
be used:

$AFN, P

where "N" is either O or 1: O if no hard copy is desired,
1 if hard copy is desired. This calling sequence word
causes the microfilm to be advanced one frame; if N = 1,

a series of vertical lines are drawn signifying that hard
copy is desired; the film is then advanced "P" more frames
where "P" is a parameter algebra expression. For example,
the entry

#AFO

will simply cause the film to be advanced one frame. The
film must be advanced whenever a graph is complete,

The calling sequence words specifying a "select grid" cause
a grid of lines to be drawn horizontally and vertically
for the graph coming up. The normal film frame has 1023
plotting positions in each direction, and the grid is drawn
in the upper right corner of the frame, 900X900, to allow
room at the left and below for labeling. A number of

types of grids are available under calling sequence con-
trol. The following three calling sequence words are used
to select a grid:

#sG: P, :P,

where "P." and "P." are parameter algebra expressions the
value of which spécify the horizontal option and vertical
option respectively, as follows:

-148-

VAILUE OF P1

O IO\ FWwWih =

GRID OPTION

1 interval (border only)
2 intervals (linear)
3 intervals (linear)
4 intervals (linear)
5 intervals (linear)
10 intervals (linear)
15 intervals (linear)
20 intervals (linear)
25 intervals (linear)
50 intervals (linear)
1 cycle logarithmic
2 cycle logarithmic
35 cycle logarithmic
I cycle logarithmic
5 cycle logarithmic
6 cycle logarithmic

For example, the calling sequence words

#£sG:h:2

will cause the following grid to be drawn:

BORDER (900X900)

e

;/ FILM FRAME (1023X1023)

Any combination of options may be used, e.g., six cycle

logarithmic (P

= 16) versus 50 linear intervals CP = 10),
etc. On logarlthmlc grids the main division lines are drawn

heavier for easy readability.

Any grid produced by the preceding option can be labeled by
using the "label grid" command immediately following the'select
Two calling sequence words are necessary, as

grid" command.,
follows:

SIG:

XYBDS(@WA)+P

~149.-

where XYBDS(@WA)+P contains the minimum X coordinate, the
next location contains the maximum X coordinate, and the
next two locations contain, respectively, the minimum and
maximum Y coordinates. The labeling of a logarithmic
scale follows the usual conventions with a "+" mark placed
at each point labeled. Linear labeling consists of "+"
marks placed along the left and lower border at points de-
fined by the option and a 3 digit signed integer at each
"+" mark with a 2 digit signed power of 10 added at the
origin. For example, if we wish to label the grid of the
previous section, and X ,, = 3.15621-02, X .. = 5.1231,
Ymin = 0y Ypax = 3, then the grid as labeled would look
as follows:

03

000-01
003-02 130 257 385 512

Because of space limitations, the linear grid of 50 intervals
is labeled only at 25 points.

The fourth option allows the writing of remarks either hori-
zontally or vertically to describe the graph and the infor-

mation contained in it. The format of the three calling se-
quence words necessary to do this is as follows:

#WRN, REM(EWP): R(SWA)+P1: C(SWA)+P2

where N = O means "write horizontally," 1 means "write verti-
cally;" "REM" is the symbol for the remark to be written; and
the next two quantities addressed are floating point numbers

specifying the row and column at which printing is to begin.

A film frame is considered to be divided into 64 rows and

128 columns; however, both R and C may be multiples of 1/k to

-150-

5

allow more exact positioning, superscripts, or subscripts.
When writing vertically, the first character is positioned
at row R and column C and succeeding characters are each
spaced down one row. No more characters will be printed
after row 64 is reached. When writing horizontally, the
first character is positioned as before and succeeding
characters are each spaced one column to the right. After
column 128 is reached, the next character (if any) will be
positioned one row down and at column 1. Note that the

ph area defined previously is above row 57 and to the
right of column 15.

To plot a series of points on a grid, the following five
calling sequence words are necessary:

PPFN,M: XC(#WP) : YC(BWP) : XYBDS(gWA) +P: TEMP(gWP)

where N = O means "do not connect successive points with
a line," N = 1 means ''connect successive points;" "XC"
is the block containing the ordinates (or the logarithms
of the ordinates, if a log grid is used); "YC" is the
block containing the abscissas (or the logarithms of the
abscissas, if a log grid is used); the four words start-
ing at the address "XYBDS(EWA)+P" contain the minimum and
maximum ordinate, and the minimum and maximum sbscissas,
in that order; and "TEMP" is a block the same length as
"XC" and "YC" which "$MP" can use the temporary storage.
"M" is the decimal equivalent of the character to be
plotted which can be determined from the following table:

TABLE VIII

DECIMAL EQUIVALENTS OF PLOTTING CHARACTERS

CHAR. DEC., CHAR. DEC. CHAR. DEC. CHAR, DEC.

blank 0 + 16 - 22 0 48
1 1 A 17 J 33 / 49
2 2 B 18 K 34 S 50
3 3 c 19 L 35 T 51
4 4 D 20 M 36 \' 52
5 6 E 21 N 37 v 53
6 6 F 22) 38 W 5k
7 T G 23 P 39 X 55

-151-

TABIE VIII (Continued)

CHAR. DEC. CHAR. DEC. CHAR. DEC. CHAR. DEC.
8 8 H 2k Q 40 Y 56
9 9 I 25 R L1 Z 57
S 10 7 26 R b2 0 58

(plotting

point)
= 11 . 27 g 43 » 59

(period)
) 28 (60
1" 12 B 29 ¥* h).{. f 61
! 13 * 30 y L5 z 62
® 14 ? 31 ~ 46 a 63
o 15 a L7

If one desires to superimpose two characters, this can be done
by setting M = 64 x (1st char.) + (2nd char.i. The points are
plotted with the character or characters specified, and succes-
sive points are connected by a vector, if desired. The maximum
vector length allowed is 1/16 of the size of the film frame.

6. To generate a pair of axes through a given point, the following
three calling sequence words are used:

#GA, XYBDS{@#WA)+P: XZERP(@WA)+P:YZERP(FWA)+P

where "XYBDS" is as described above, and "XZERP" and "YZERP"
represent, respectively, the ordinate and abscissa of the point
through which axes are to be drawn. The axes cover the 900X900
grid area only. As with "gPR," "$MP" detects certain errors,
none of which are serious enough to cause it to return control
to IVY, and prints appropriate diagnostic corments. Remedial
action taken in the event of some errors is described in the
table of error numbers., Some information on "@MP" diagnostics
is included in Chapter 7, page 159.

J. The disk program. "g$DK" is used to write blocks of data on the

disk unit of the 7030, and on the disk units of 7090 machines which have

-152-

them attached, and to read them back as needed. Although some 7090's do

not possess a disk unit, "$DK" is nevertheless a valid subroutine on all

T090's, using a tape to simulate the disk. Up to 32 blocks of data,

remarks, code, or calling sequences may be written on the disk.

1

2.

K.

To write a block on the disk, the following two calling sequence
words are used:

#WRN, ID(§WA)+P: DATA(#wWP)

where "N" (only on 7090's not having a disk unit) specifies
the tape unit being used to simulate the disk. Only one
tape unit may be used — i.e., "N" must always be the same
number in a given program. On the 7030, and on 7090's hav-
ing a disk, "N" is ignored. "ID(SWA)+P" addresses an "ID"
word in the same manner as in the "$TP" calling sequence,
This "ID" is entered into a 32-word table and is as-

signed an arc number on the disk (on some T7090's, a record
nunber on the tape specified). The block "DATA" is then
written in this arc (or record). If 32 blocks have

already been written, an error indication is given unless
the "ID" specified is the same as one of the previous twenty.

To read a block from the disk, one enters

PRDN, ID(WA)+P: DATA(gWP)

The "ID" is sought in the table mentioned above, and its loca~-
tion on the disk (or tape) discovered, and the record is read
into the block specified by "DATA." If the "ID" cannot be
found in the table, "$DK" gives an error indication and con-
trol returns to IVY. (The absence of the "ID" from the table
indicates that a record with this "ID" was never written,)

The instructions to operator routine. "g@P" functions similarly

to the "@" card in that it prints a remark on~line, sounds a gong if pos-

sible, and halts or waits until the "start” (7090) or "console signal

(7030) is pressed, signifying that the instructions have been carried out.

The calling sequence to "$PP" is as follows:

=153

(gP,$¢P: REMARK($WP)), ...

where "REMARK" is the name of the remark to be printed as a comment to

the operator,

L. The character manipulation progrem. "$CM" is used to change

remarks or formet statements or to construct new ones undeér programmer
control. "$CM" may not be used to alter calling sequences on "K" cards

(see Chapter 8, pages 182-184). A number of calling sequence words cause

the various necessary functions to be carried out.

1e To set an entire block to contain the same character, e.g.,
blank, zero, etc., the following calling sequence word
is used:

$SN, REMARK(@EW)

where "N" is the two-digit decimal equivalent of the char-
acter desired (see Table VIII), and "REMARK" is the block
to be set.

2. To move from one to fifteen characters from one remark block
to another, the following five words are used:

¢MN:AD(¢WA)+P1:REM1(¢WP):AE(¢WA)+P2:REM2($WP)

where "N" is a hexadecimal digit, 1 < N < F, specifying
the number of characters to be moved; location "AD($WA)+P1"
contains a fixed point number specifying the character
number in remark block "REM1" where the "N" characters to
be moved begin; and "AE(PWA)+P." contains a fixed point num-
ber specifying the character nUmber in remark block "REM2"
where the "N" characters moved will begin.

3« To compare from one to fifteen characters in one remark
block to the same number of characters in another remark
block, the following five words are necessary:

¢CN:AD($WA)+P1:REM1($WP):AE(SWA)+P2:REM2($WP)

-154 -

EXAMPLES:

1.
the illustration below, then the calling sequence illustrated will change

the "P" to a "T" and the "7" to a "3" in the format statement, thus alter-

where again 1 < N < F specifies the number of characters
to be compared; "AD(SWA)+P," contains a fixed point num-
ber specifying where the "k characters to be compared
begin in "REM1;" and "AE(SWP)+P." contains a fixed point
nunber specifying where the "N"“characters in "REM2" be-
gin. The specified "N" characters in "REM1" are com-
pared to the "N" characters in "REM2;" if equal, "gcs1”
is set to 1; if not equal, "gCS1" is set to zero. To
clarify the usage of "$CM," a number of examples are in-
cluded below,

To alter a format statement: If "R1" and "F1" are as shown in

ing it to print numbers with less significant digits off-line:

2,

R|F1 =CRP, 1.1.1.7.2,$$ $

RIRI=T3P78$3

I]PARI=3, PAR2=3, PAR3=2, PAR4 =|I,

($P, SCM: $MI1: PAR(SWA)+1. RI ($WP). PAR(SWA)+2:

FI(SWP). SMI: PAR(SWA)+3: RI(SWP): PAR(SWA) +4:

FI($WP)),...

Defining a block and setting it to blanks: If remark block

"R2" is defined as shown below, space is allotted for it but is not

cleared in any way.

ters (in this case, all blanks), the following is used:

11

R|R2(759)= 888

= T

I{($P,SCM:$S00, R2($WP)),...

_155-

To ensure that the block contains only legal charac-

I

3. Determination of a character's position in a table, In the

following example, we wish to see whether a character of "REMARK" lies in
'TABIE" (i.e., whether it is alphanumeric) and if so, its position, so

that we can determine whether >r not it is alphabetic:

R TABLE =0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$$S

I{xi(1,36), PARI=XI,

($P, $CM:$CI: PAR(SWA) +i: TABLE ($WP). N(SWA)+1:

L L
REMARK({$WP)), (LI) $CSI1-1=0, {(XI),...(not in table).
=2
<oy LI, {(L2)X1~10 = GZ,... (numeric) 1
,L2,...(alphabetic)

The calling sequence is entered once for each value of X1, from 1 to 36,
Each time PAR1, the character position in "TABLE," is set to the value of
X1. It is assumed that N1 contains the character position in "REMARK."
If at some given exit, "$CS1" contains 1, the character is indeed in
"TABLE," and the contents of X1 are tested to see whether the character
is numeric (X1 > 10) or alphabetic (X1 > 10). If the index loop is com-
pleted without $CS1 being set to 1, the character is not in "TABLE" and
hence not alphanumeric.

M. Summary. In this chapter we have dealt with the calling se-
quences to all internal IVY subroutines which are available to the pro-
grammer, With these subroutines one can do a wide variety of input-output
operations, indicator and switch testing, and internal manipulation. Our
study of the IVY "g$"symbols is now complete, In Chapter 9 one can find a
table of all the IVY "g" symbols (page 187), as well as quick reference

tables for calling sequences to the various subroutines described in this
chapter (pages 197-202),

-156-

CHAPTER T

IVY ERROR INDICATIONS

Each time any of the routines in IVY detects an error, an error
diagnostic is printed. Each routine prints particular information, de-
scribed below; all these printouts have in common an octal number in

columns T73-78. This number, called the error number, can be looked up in

a table of error numbers published separately from this manual, which is
available to manual holders and at the console of each machine on which
IVY is run, This table, arranged in numerical order, gives a complete
description of the error which caused the diagnostic printout., The table
1s not included here both because of its length and because from time to
time additions to, corrections of, and deletions from the table will take
place. The details of the rest of the error printout for each routine
are described in this chapter in a brief manner so that the other informa-
tion in a diagnostic line can be easily interpreted.
A. "$LD" prints as follows:
1+« Columns 1-72: contents of the card on which the error
was detected, if possible. If these columns are blank,
either tne card is the same as the one on which a pre-

vious error occurred, or else the card contents are not
available to "$LD." 1In the latter case the type of

=157~

error indicated, and the other information printed on the line,
are usuvally sufficient to localize the error.

2, Columns 73-78, the error number described above.

3. Columns 79-84, an alphanumeric symbol to help locate the error
on the card printed in columns 1-72. In some cases, this is
the symbol for the formula set or formula in which the error
occurred. In others this is the last data symbol encountered
on the card before the error was detected.

Lk, Columns 85-120, other information, where possible, to help lo-
calize the error. For instance, if "L" cards are being loaded,
columns 85-90 contain the mnemonic code for the operation which
caused the error indication. In all cases, the explanation of
the octal error number describes the information which appears.

When data or remarks are being loaded, any error in the definition
of a block or in its loading causes the control word to be flagged. When
code is being loaded or assembled, errors caused by referring to such er-
roneous data are caught, and the guilty instructions are replaced by trans-
fers to return control to IVY. The same procedure is followed in the
case of errors peculiar to the code itself., When calling sequence blocks
are being loaded, an error of some sort in a calling sequence word entry
causes the erroneous word to be replaced by a word of all ones, which,
when detected by the subroutine using the calling sequence, causes an
error indication, and in some cases, causes control to be given to IVY
(e.g., in"¢TP," "gAP," etc.).

B. The form of the error diagnostic for "$AP" is similar to that
for "$LD," except that in many cases the card image is not available to
be printed in columns 1-~72., This program makes up for these difficulties
by printing additional information in the remaining columns of the diag-

nostic.

_158-

C. "grP" and "gDK" print diagnostics as follows:

1. Columns 1-72 contain, when possible, the ID of the record
being written in the form of an octal number prefixed by
"ID=," and the tape number, i.e., the IVY number as well
as the channel and unit number on the machine being used.

2. Columns T73-78, as usual, contain the octal error number.

3. Columns 79-84 contain the alphanumeric portion of the
"#XXX" part of last calling sequence word encountered
before the error was detected.

D. "g#D" prints only an octal error number and the symbol of
the last block dumped before the error was detected.

E. "gPR" and "$PH" print the octal error number in columns T3~
78, and usually a symbol in columns 79-84. This symbol may be the name
of an erroneous format statement or the last block encountered in the
calling sequence., In some cases it represents the alphanumeric part of
an illegal "gXxX" calling sequence command. Which of these it repre-
sents is always explained in the error number description.

F. "gMP" and "gCM" also print merely the octal error number and
a symbol which may represent the alphanumeric part of a "$XXX" calling
sequence entry or the name of a block. The error description table ex-
plains how this symbol should be interpreted.

Other than the detailed description of the interpretation of
error numbers, little else can be said about error diagnostics. The
above information, plus what has been sald about the error detection
procedures of the various subroutines described in Chapter 6, should

suffice to enlighten the programmer on exactly what error he has com-

mitted when this information is combined with the error number tables.

-159-

In general it has been found that a great variety of rather specific
errors can be spotlighted by this method. If,instead, a line containing
a comment describing the error were printed, each comment would take up
considerable space in core and hence errors noted would be fewer and more
general, Although the IVY number system presents more work for the coder,
until he learns the more common error numbers and their meanings, it
nevertheless mekes the location of errors (often rather difficult in some
other coding systems) a fairly trivial matter. The further advantage of
IVY, that a code containing errors may be executed until an erroneous in-
struction is encountered, greatly simplifies the process of debugging
and, indeed, is an ideal system for the class of fallible coders which

is an extremely large subset of the class of all coders. And yet, error
checking is in general a simple process which does not take a large
fraction of time away from the IVY program so that coders with debugged
decks may also run with advantage in the IVY system,

It should be noted that IVY by no means is able to detect all
possible errors because of space and time limitations. More subtle er-
rors, and particularly, coding errors involving e.g., index loops which
have large enough limits to destroy parts of the code and other errors
in method, can be detected and corrected only by a human being. Thus,
the complete absence of error diagnostics is no guarantee that a code is
debugged. Only the successful running of a code to completion with the
corresponding production of correct results is a guarantee of this; and,

indeed, such a run guarantees only that the part of the code executed is

debugged.

-160-

A further note of caution is now appropriate: although IVY may
not detect a certain error, in many cases the undetected error will cause
an error indication to be generated on some subsequent instruction which
appears to be correct. Detectable errors may also produce this phenomenon,
In a case like this it is advisable to examine the place at which the
generated error printout occurred and work backwards from this point,
both sequentially and in a non-sequential fashion to the data blocks
and other locations referred to by the instruction on which the diag-
nostic occurs. In this manner the true source of generated error

diagnostics can usually be found,

-161=~

CHAPTER 8

CODING EXAMPLES

Coding efficiently. Coding in an efficient manner is largely an

acquired characteristic and cannot really be taught except by experience.
Nevertheless, a few tips can usually be given on virtually any system
which will accelerate this learning process. Hence the first section of

this chapter is dedicated to coding efficiency. An efficient code is

defined as a code which, when translated to machine language, optimizes
a number of quantities: the number of machine instructions which should
be minimized; the execution time of the code.which should again be a
minimum; the ability of a code to produce accurate results which should
be as great as possible; and the conciseness of the code which should

be as great as possible, both to facilitate understanding of it by per-
sons other than the original coder and to simplify debugging. Thus we
see that constructing an efficient code presents a rather complex mini-
max problem the solution of which is by no means trivial. Nevertheless,
it can be approached rather closely by the experienced coder; the follow-
ing considerations should sid considerably in producing an efficient

code.

-162-

1. Minimizing the number of machine instructions. To do this, a

programmer must for the moment forget that he is human and try to think
as a machine., A few simple rules will illustrate this:

a. Although IVY allows for the use of an almost unlimited num-
ber of index registers, if more are specified than a particular machine
contains (three on the 7090 and fifteen on the 7050), a corresponding
increase in the length of the code is required to simulate the extra in-
dex registers. If, however, one does need more index registers than
are provided physically, it is more efficient to allow for this number
on the "S" card and let IVY handle the problem than to specify, e.g.,
three, and do all the necessary storing and restoring in the algebraic
language.

b. If an algebraic expression occurs as a part of two or more
larger statements, it is advisable to compute this expression first in
terms of some symbol and use the symbol, rather than the expression, in
the larger statements of which it is a part. For example, the following

is an example of an inefficient code:
I|AL.2=C(#W)+Cx(I)+CXX(M), A2.2=C{#W)+CX(I)+Cxx(M)-CX(XK)+CxX(JT),
Coded efficiently, this example appears as follows:
I|T1=C(gW)+CX(I)+Cxx(M), Al.2=T1,A2,.2=T1-CX(K)+CX(J),

where "T1" is some suitably chosen temporary location.

c. In the case where a quotient contains a complicated expression

-163~

in the denominator, a person using a hand calculator will usually com-
pute the denominator first, write it down, compute the numerator, then
while the result is still on the dials, divide by the denominator. This
is more efficlent than computing the numerator first since in the latter
case one must write down two numbers., Electronic computers work in the
same way. Therefore IVY provides the reciprocal divide operation "//,"
which should be used whenever a relatively complicated expression appears

in the denominator. For instance, some inefficient expressions are

I1|G=C+B/(D*E+F), H=B+C/(D+E)+F,

efficient expressions for the same things are:

1|G=D¥E+F//C+B, H=D+E//(B+C)+F

d. To generalize a bit on the above, two expressions can often be
written with different arrangements of terms and parentheses. In general
the one with fewer parentheses is always more efficient than the other.
Most often, each set of parentheses in an IVY expression causes a "store"
instruction to be generated. Hence, the fewer parentheses an expression

contains, the shorter the machine language code. For example:
inefficient: -C2+((Ccax*2-(k4.,0%C1%C3)) *#R)/(2.0%C1)

efficient: 2,0%C1/ [C2%%2-(}4,0%C1*C3) « gR-C2

e. Another point to consider under this heading is the relation
between storage used for code and storage used for data. Generally, if

one is decreased the other increases, but not necessarily in direct

-16k4-

proportion. For example, in using the "$J" convention to skip the assem-
bly of one of two alternative formulas (page 104), giving up one location
for a parameter to control this can save many locations that the alterna-
tive formula would occupy if assembled. And, on the other hand, one can
often save a considerable number of data locations by using double-stored
data. The code will be lengthened, of course, by the use of instructions
which refer only to the "Q" or to the "T" portions of these numbers, thus
producing what one might call a less efficient code; but the increase in
the length of the code will usually not be as great as the decrease in the
length of the data, and if the amount of storage used rather than the
speed of the code is the paramount consideration, then the use of double-
stored data 1s definitely advisable.

2, Minimizing the running time of a code., This is a very elusive

technique to develop, and there are two rather contradictory methods for
doing it. One is to reduce the length of the program using the techniques
described in 1 sbove. The other is to increase the length of the code by
avoiding index loops and subroutines as much as possible. It is usually
best to compromise on the latter method, since adding index loops and sub-
routines increase the efficiency of the code in other ways by making it
shorter and by making it easier to read. No really hard and fast rules can
be given here — the programmer himself must consider his own peculiar re-
quirements of length, speed, simplicity, etc., to reach a decision. Only a
very short and simple code can be truly optimized one hundred percent with

respect to speed.

-165-

3. Producing accurate results. Results can be affected not only by

cunmulative errors resulting from roundoff and truncation, but also by er-
rors resulting from the inherent accuracy of the method used. The latter
can be obtained from any good text on numerical analysis. About roundoff
and truncation errors, however, little is known, but a few simple rules
can be stated which help to minimize errors from this source.

a. When adding together a table of floating point numbers, the
smaller numbers should be added in first. The cumulative effect of these
numbers may change the result of the calculation, but might pass unnoticed
if the larger numbers are first combined to produce a number compared to
which each of the smaller numbers taken alone is not significant.

b. Along the same lines, when any assortment of numbers 1s be-
ing combined arithmetically, it is best to combine numbers of approximately
the same order of magnitude before working up to higher order results,
This point is made more clear by a consideration of the evaluation of a

polynomial, e.g., of fourth degree:

inefficient: C5% (Y**l) +(CLx(Y%%3)) +(C3*(Y*%xY2)+(C2%Y)+C1

efficient: COXY+CUXY+CI*Y+C3¥Y+C2¥YC1

In this case, the number of parentheses also indicates the relative inef-
fiency of the first example. However, in the following example (in which
a number is raised to the 5/2 power) there are no parentheses to give a

clue. The efficient way of writing the operation, however, contains

fewer operations:

-166-

inefficient: AX.ER**5 or AX**5,8R

efficient: AX BR*¥AX*AX

The following cxample can be given to illustrate an efficient way of com-
puting the difference of the squares of two numbers:
inefficient: Yx%2-(Z%%2)

efficient: Y-z%(Y+Z)

The latter will give greater accuracy because it follows the rule of mul-
tiplying the two numbers of roughly the same order of magnitude, whereas
in the first expression the two numbers may differ considerably more in
order of magnitude. Thus, to compute, for instance, the expression

WP 5l
- BX , we use the following sequence:
I|T1=AX.$R.FR*¥AX, T2=BX.#R.#R*BX, RESULT=T1-T2%(T1+T2),
Although a great variety of examples can be paraded forth to illustrate

this type of efficiency, it is hoped that the above will be sufficient,.

4. Conciseness of the code. An extremely concise code is usually

not efficient from the standpoint of speed but a concise code has other
advantages such as readability, aesthetic beauty, and — especially im-
portant for some coders — compactness. Furthermore, a concise code is
often easier to debug than one which sprawls out like some sort of enor-
mous octopus. The following rules should be observed to a greater or
lesser degree depending on the conciseness desired:

a. Wherever possible, loops should be used to evaluate ex-

pressions where repetitious operations occur. Although loops are slower

-167-

in execution than linear sequences, they produce a beautifully compact
machine language code. For instance, consider the evaluation of a poly-

nomial of degree N:

inefficient: I|RESULT=C{N+1)*Y+C(N)*Y+.4.+C(3)*¥YC+(2)%¥Y+C(1),40s

efficient: I|RESULT=C(N+1),X1(N,1),RESULT=SM*Y+C{X1),(X1), 00

b. The same sequence of instructions, even if operating on
different quantities, need never appear twice. Instead, the calculation
being performed can be coded as a subroutine, entered from any point in
the code where this calculation is desired. By subroutinizing a code so
that each part of it has a separate function to perform, debugging is
greatly simplified, too, since abnormalities in the results can be
quickly traced to the guilty subroutine. The formula set-formule-local
entry structure of IVY makes it singularly trivial, and almost compulsory,
to code in this manner.

The use of index multiples. (For review, the reader is referred

to Chapter 3, page 54, where index multiples are first discussed.)
Suppose, for example, that an array "G" and its index multiples "GX" and

"GXX" are defined as follows:
p|G(AT, BT, CT),GX(BT)=(M)AT,GXX(CT)=(M)AT*BT,...

Suppose, now, that we wish to compute a quantity "D" involving the ele-
ment of "G" having indices (3, 2, 6). Then either of the following se-
quences of instructions can be used:

I|X1=3+GX(2)+CxX(6), D=G(X1)+...

-168-

or

1|A1.1=G(gWP+3+GX(2)+GXX(6), D=G(A1)+...

In either case, the address given for the element of "G" is G($WA)+3+
(1%AT)+(5%BT) which corresponds to the general formula in Chapter 3,
page Sle

If, now, we wish to address a general element (i, J, k) of the

array "G," we can do so in any of the following ways. (Let us assume

that 1 is in X1, J is in X2, and k is in X3):

1o I[XU=X14GX(X2)+GXX(X3), D=G(XU)+eas
2. I]A1.1=G(BW)+X1+GX(X2)+GXX(X3), D=G(A1)+...

3. I|A1.1=G(EW)+0X(X2)+GXX(X3), D=G(X1+A1)+...

and so on, As can be seen, there are a great variety of ways in which a
general element of an array can be addressed. Each is best for its own
particular purpose. The decision of which of the above to use, or whether
to use another method, is up to the programmer. For example, we recall
that arrays such as "G" are stored column-wise, i.e., the first index
varies most rapidly. Method 3 can be used when we wish to operate on the
elements of a particular column or columns of an array in order, indexed
by X1. For instance, the example in Chapter 4, page 78, illustrates a
method of operating on the two-dimensional matrices which make up the
three-dimensional block "C."

Index loops. We encountered our first example of an index loop in

Chapter 4, page 92. There the index ran between two values, one of which

-169-

was 1 and the other of which was a parameter algebra expression, thus:

Xn(1,P),... or xn(P,1),...

(xni,... (Xn);...

If one desires to set up an index loop between parameter limits one of
which is not 1, and/or increment the index by values other than *1, the

form for doing this as we learned in Chapter 5, page 99, is as follows:
Xn=N1’Lb""

X =X +N,, (Lh)xn-N =Cyene

3

where N1 is the initial value of Xn’ N2 is the increment (positive or

negative), and N, is the final value of X . '"C" represents some appro-
’ 3 n

priate condition for the branch. We note that the Ni must be parameters

since the dynamic modifier "A" is not present. An example of this type
of index loop is given in the next section of this chapter, page 172.

To construct an index loop in which any of the Ni as shown above
are computed or dynamic quantities, the modifier ".A" must occur after
the index register symbol left of the equal sign. For example, if N1,
N2, and N3 are all computed quantities, the following is used:

Xn‘A.:N] ’Lm, XX

X, -AsX N, (Lm,A)Xn-N

=C’o..

3

-170-

Thus, with the use, where necessary, of the "Ln" entry and the ".A" modi-
fier, complete flexibility can be attained in writing index loops.

Double Stored numbers. The entry of double-stored nunbers on "E"

cards, and some motivations for their use, e.g., to use the tags to spe-
cify boundary and interior points, etc., have been discussed in Chapter 3,
pages 58-59. If it is a simple case of distinguishing between boundary
and interior points, only a one-bit tag is needed. If, however, the
boundaries have different conditions on them, more tag bits are needed.
Again, the choice of how many tag bits to use in a double stored block
is the programmer's., Of course, the fewer tag bits used, the greater
the accuracy of the high-order or "Q" portion of the number. One should
recall that the length of the tag can be minimized by considering that
only four tag bits, for instance, are needed to specify fifteen condi-
tions, and not fifteen bits. Where a number of different alternatives
are specified by the tag bits, one can load the contents of the tag into
an index register and go to a transfer table which carries control to
the various alternative routines, as shown in the following example
(where the tag length is 3, but the tags take on only the five values

0, 1,000, 4):

C|LPAD * CURRENT * TAG * INTE *XI.*GB T A TT.

1]
[]
1]

l l | 1 fuxs, x3=x3+x1, (x3+0) N !] I |

I X =GEF{X2,T.3),($P, LI} I ' | I

{$P,RA)

) |1

($P, RC)
(sp.701]

($P,RE)

B

-171-

The next example illustrates a parabolic rule integration (a spe-
cial case of Simpson's rule for equal intervals of the independent var-
iable). Here it is assumed that the block "F@" contains N+1 values of
the function f(x) to be integrated in order of increasing x. N is an
even integer and the interval in x between values of the function f(x)
is 2h where h is contained in the location represented by the symbol "H."
We further assume that the block "F@" is double-stored with a tag length
of two bits. f(x) and f(xN) have tags of 2, f(xzi) have tags of zero,
and f(x2i+1) have tags of 1, The integration, the result of which is

placed in "T1," proceeds as illustrated. Recall that the formula for

this type of integration is

I-=

Wil

(f1 +1+f2+2f3+ .e .+1LfN+fN+1)e

Line

I C | PARAB@LIC * INTEGRATION.

2 I{T=0,Xi=1,X2=F@($wC),

3 [P U, X3:=F@(X1,T.2),(L2)X3:=0,

4 (L3)X3~-1=0, |
— T
5 TI=FB(X,Q.2)+$M, L4, Xi = XI+I,
6| M |xa2a=x2-1,(LI)x2=NzZ,(LS5), —J:]\T
7 L2, TI=2.0 % FB(XI,Q.2)+$M, (L4), =
8 L3, TI=4.0 % FP (X1,Q0.2)+ $M, (L4), =
9 L5, TI= $M *H/3.0,... ‘

-172-

Note the use of "L1" to simulate an index loop. This technique, described
in the previous section, is best used when an index register runs between
computed values or values for which there exist no symbols. If, of course,
we have a parameter M which gives the length of the "F@" block, we can
replace the last expression in line 2 with "X2(M,1)," and the first two
expressions in line 6 with '(X2),".

A complete IVY code., The reader is now referred to the complete

code illustrated on page 4 which is our next subject for discussion. This
program, although short and simple, illustrates principles which are fol-
lowed in any IVY code, regardless of length or complexity, as well as dem-
onstrating some further coding techniques.

First of all, the gross organization of an IVY code is illustrated
in the example, This organization is as follows:

1. "¢" card to identify output. In this case off-line output
is not produced, but the contents of the "*" card will be
printed on-line to identify the printout. This is also
useful for logging purposes.

2. "S" card to initialize program. Note that no formulas
occur in either formula set and that there are no store
addresses, Four index registers and three local entries
are used, and two numbered symbols "R" are specified.

3« "D" cards. In this example we both define and load the
two vectors "A@" and "B@," name the two formula sets
"FLOW" and "SUBR," and set aside one word for temporary,
called "T,"

k., "R" cards, which load two remarks: a format statement and
a comment. The error comment is not really necessary in
this case since the vectors obviously have equal counts.
It is entered for illustrative purposes.

5., If any "K" cards were entered, they would occur next in
s y
sequence,

-173=-

6. "A" card to write the first formula set on tape 2, file 1.
T. "I" cards entering the first formula set, called “FLgW."
8. An "A" card to write the second formula set on tape 2, file 2.
9. "I" cards entering the second formula set, called "SUBR."
10. "A" card to read in and assemble the first formula set.
Note that an "X" card is not necessary since "FLgW" ends

with an execute statement,

11, If more data were to be loaded, "E" cards and "X" cards would
occur after the last "A" card.

Let us now consider the code in more detail. We note that each for-
muila set is preceded by an "A" card to place it on tape 2. In a code
this short, both formula sets can be placed in the same file, if desired,
by using only one "A" card in front of "FIgW," and moving the execute
statement on line 13 down to the end of "SUBR," on line 22, However, the
procedure shown here is equally valid, and is especially useful for lon-
ger codes.

In all IVY codes, long as well as short, there should be a flow code
as in this one; hence the choice of the name "FI@W." The flow code is a
formules set, the function of which is to control the loading of data and
the conversion of other formula sets, as well as the access to and from
the other formula sets of the program which should be semi-independent en-
tities. Thus we note, as in the simple example, that the flow code con-
sists mainly of branches and calling sequences to subroutines, supplied
elther by the coder or by IVY. Ionger programs will of course have lon-
ger and more detailed flow codes constructed from a number of formulas,

which test various parameters and branch to various formula sets depending

-17&-

on the values of these parameters. Thus the flow code acts as a sort of
traffic policeman, directing the flow of control along the paths desired
in a particular run.

In the case of a code of such length that the entire program will
not fit into memory at one time, the flow code can alsc assume the role
of monitor, directing the allocation of memory space, altering control
words, and reading new formula sets into the space formerly occupied by
others whose purpose is completed., Coding examples involving this partic-
ular technigue occur in Appendix 1, since they are of little interest to
most coders.

In the flow code of our example, the assembly program "$AP" is
first entered to convert the subroutine "SUBR" into machine language.
Control is then returned to "FIgW" which executes a pathfinder branch
to “SUBR." Note that at the time "FL@W" is converted, this pathfinder
branch has not yet been assigned an address since "SUBR" is not yet
converted. When "FLPW" goes to "$AP," however. this address is com-
puted and inserted. Thus it is perfectly legal for a code to contain
branches to uncoverted routines as long as the routines are converted
before branch references to them are executed as is true in this case.

The calling sequence to "SUBR" contains the control words of two
vectors "A@" and "B@" of which the dot product, i.e., the sum of the
products of corresponding elements is desired, and the address of a
location "T1" where the result is to be stored. The error return con-

tains, as required, a pathfinder branch to a location which prints out

-1 75-

an error comment., If control returns to the normal return, the result
is printed on-line, In either case, at the end of the program,control

is returned to IVY by the pathfinder branch

b (¢P’$ID)’

which, we recall, must always be the last executed instruction in any
IVY code. The loading program selects the reader or off-line tape in an
attempt to find the next IVY code, and if none exists, a halt occurs.

The subroutine first causes the pathfinder contents to be placed
in Xk, then sets up a temporary block "gD" four words long. Index regis-
ters are stored in the first three, and the dot product is accumulated
in "gph," from where it is later transferred to "T1." The information
in the calling sequence is examined and if found in error, the contents
of Xb are decreased by one so that the exit is modified to cause con-
trol to return to the error return, Otherwise, the computation is com-
pleted and control returns normally.

More discussion of IVY calling sequences., In Chapter 6 we con-

sidered in detail the calling sequences to IVY internal subroutines.,
However, this section is designed primarily to consider subroutines
which the programmer has coded and the techniques of constructing and
handling these programmer calling sequences. This discussion supple-
ments in more detail what has been said in Chapter 5, pages 105-110, on
calling sequences.

Usually the "gWA" portion of a calling sequence word contains an

address or count, and this address or count is best used in an index

-176-

register for address modification or for counting purposes. One may ob-

serve both of these in the illustrative example discussed in the

previous section. Either of the entries

:SYMBPL(@W): or :SYMBPL($WA):

causes the control word address to be placed in the "$WA" portion of the
calling sequence word; it should be recalled that the control word ad-
dress is one less than the base address of the block. Thus, in line 18
of the illustration,we see the two expressions "$z(X2+1)" and "$z(X3+1)"
occurring. We also see on line 10, the entry "T($WA)+1" in the calling
sequence which gives the true address of "T1," and hence this is re-
ferred to in line 20 as '¥z(X1)"+ To load the "#WA" portion of a calling
sequence word into an index register "Xm" if "Xn" contains the pathfin-

der contents, either of the following entires may be used:

X, = $2UX +N), or X = $z(X +N, BWA).

In other words, the index register is normally loaded from the "$WA" por-
tion if nothing else is specified, However, the latter entry is recom-
mended to avoid confusion.

A parameter, literal, or the result of a parameter algebra ex-
pression may also be entered in the "$WA" portion of a calling sequence

word by one of the entires
:SYMB@L: or :N: or :P:

where "N" represents a fixed point literal and "P" represents a parameter

-177-

algebra expression. This number may be used in arithmetic or loaded into
an index register if it is less than 215 on the 7090, 218 on the 7030.
If loaded into an index register, again the "$WA" modifier is recommended
though not necessary. If used in arithmetic, and if a "$XXX" entry
occurs in the same calling sequence word, the "$WA" modifier must be
used to mask out the "$XXX" portion of the word.

A quantity can be placed in the "gWC" portion of a calling se-

quence word by either of the entries
:SYMBPL(gW): or :@XXX:

where "XXX" represents one, two, or three alphanumeric characters. In

the first entry, the control word count of "SYMBPL" appears in the "swe"
portion of the calling sequence word, and in general this will be loaded
into an index register for counting or testing purposes by means of the

entry

X = ¢z(xn+N, gWe),

as we see in line 16 of the illustration. The "$WC" modifier must be
present. If, however, a "$XXX" entry occurs, it can be loaded into an
index register on the 7090 only if there are one or two characters since
three characters occupy 18 bits. In most cases two characters are per-
fectly sufficient for the coder's purposes so this can be done with
impunity. The X's can then be tested for control purposes by using con-
ditional branches dependent on dynamic index arithmetic expressions.

For example, if the entry in calling sequence word 5 consists of only

-178-

one character, we might test whether this character is "S" by the follow-

ing:
X1 = $z(Xh+5, gWC), (L1)X1-50 = 0, ...

The decimal representation of "X" is obtained from Table 9.1, Chapter 9,
page 186.

If the "$XXX" entry contains three characters, it is best to test
its value using fixed point arithmetic. For example, if we wish to test
the fourth entry in a calling sequence for "ABC," the following should
be used:

(11)B2(Xb+k, gWC) =1 T*6U*64~18%64-19 = O
or simply (and more efficiently)

(L1)$z(X+l , gWC)~-70803 = O,

1"

where again the decimal representations of "A," "B," and "C" are ob-
tained from Table 9.1,

Constructing a variable length calling sequence., A calling se-

quence which always contains a fixed number of words such as that illus-~
trated presents no particular problems. The subroutine is simply coded
to take this length into account, and always returns control to an exit
or exits immediately following the calling sequence., However, if the
programmer wishes to code a subroutine the length of whose calling se-
quence varies from one entry to another, a number of problems arise, and
these are discussed in this section.

1. How to tell when the end of the calling sequence has been

-179-

reached:

a. The easiest method of doing this is to place the calling se-
quences on "K" cards, and to set up pathfinder branches to the subroutine

in this fashion:

($P, SUBRTN: KNAME($W)),ee.

where "KNAME" is the symbol of the calling sequence block which cortains
the particular calling sequence desired for this block. Then the sub-

routine, in outline, will look as follows:

1| SUBRTN: XI, X2 = $Z (XI+1,SWC), X3=$Z (XI+1,SWA),

[T e [T

X2=X2-1, X3=X3+1,{L1)X2=NZ,... (exit)

The count and address of the "K" block are loaded into separate index
registers, and the current calling sequence word can be addressed by
"ZX(X3+1)" with "$WA" and "$WC" modifiers, if needed. At the end of
the routine the count is decreased by 1, the address is increased by 1,
and control is returned to the start of the subroutine if the count is
not zero; otherwise, an exit is performed. Thus, we see that putting
calling sequence on "K" cards allows us to detect the end of a variable
length calling sequence by using the count of the block.

b. If one does not wish to use "K" blocks, the calling sequences

can be included in the code, thus:

-180-

($P,SUBRTN:CSW]:CSWE:...:CSWN),...

vhere each "cswi" is some calling sequence word entry. The problem of
detecting the end of the calling sequence then becomes more acute. How-
ever, the problem can be solved in one of the following ways:
(1). The first calling sequence word can contain a param-
eter which tells the number of remaining calling
sequence words,
(2). The last calling sequence word can differ from all other
calling sequence words in an easily detectable manner,
e.g., by containing a special "$XXX" different from all

others. A zero word is easily detectable, and can be
entered by using

:¢,0:
¥
as the last word in the calling sequence.

2. How to move forward through a calling sequence: If an index
register is loaded with the location of the first calling sequence word,
either from the pathfinder or from the control word of a "K" block, one
can advance forward through the calling sequence either by advancing the
index register by one each time a new calling sequence word is desired,
or by using the contents of the index register to compute a stored address
which is incremented by 1 each time a new word is desired, e.g., by the

following technique:

L1,Al.n = Xm+1,

X = Xm+1,(LI),...

-181-

where Xm contains initially the location of the first calling sequence
word, minus one, and "n" is the number of times the stored address "A1"
is used.

Constructing a calling sequence block., The final topic in this

chapter will be a consideration of the construction of calling sequence
blocks. It should be recalled from Chapter 3, page 64, that calling se-
quence blocks entered on "K" cards can be assigned without being loaded
with information; or such blocks may be only partially loaded with in-
formation, The programmer can then construct these blocks as he wishes,
using only IVY algebraic instructions. Suppose the name of such a block
is "KNAME," and we wish to construct s calling sequence word in the Nth
position of this block. Then we can do this in any one of a variety of

ways, for example:

KNAME(N,M) = expression,

X

N,KNAME(Xi,M) = expression,

X

KNAME($WA),¢z(xi+N,M) = expression,

and so on. "M" is one of the modifiers "$WA" or "$WC," or may be
omitted in some cases, The following examples will serve to 1lluminate
the reader on the techniques involved:

1. To insert a "$XXX" entry: Suppose we wish to enter the
expression "$ABC" in calling sequence word N. This can be done as fol-

lows:

KNAME(N,#WC) = 17*64*6h + (18%64)+19,

-182-

or more simply,

KNAME(N,$WC) = 70803,
where the decimal representations of the characters A, B, and C are ob-
tained from Table 9.1, page 186. Note that the "$WC" modifier is re-

quired here,
2, To insert the control word of a symbol:

KNAME(N) = SYMB@L(#W),

where no modifier is required on the left. Similaerly, one may enter a

control word modified by a parameter algebra expression as follows:

KNAME(N) = SYMB@L(gW)+ P,

3¢ To insert the control word address or control word count of a

symbol in the "$WA" portion:

KNAME(N, #WA) = SYMBOL(@WA),
or
KNAME(N, #WA) = SYMB@L(#WC),

These expressions may also be modified by parameter algebra if desired.
L. To modify either the "FWA" or "$WC" portion of an already

existing calling sequence word by some expression:

KNAME(N, gWA) = gM+P
or
KNAME(N+gWC) = #M+P

and so on. In general, by the use of such expressions, one can produce

-183-

considerably more calling sequence words than by actually entering the
word on the "K" card. Such unconventional calling sequence words are,
of course, permissible as long as they do not occur in the calling se-
quences to any of the IVY "$" routines. Examples of entries which pro-

duce atypical calling sequence words are as follows:

KNAME(N,$WC) = SYMB@L (gwA),
KNAME(N, $WA) = SYMBAL, (#WA)+SYMBAL,(HWC),
KNAME(N) = 3,1415926535%¥RADIUS

and so on,

It should be emphasized that calling sequences cannot be modified
by using "$CM," the character manipulation routine, Calling sequence
blocks are entirely different in form and in contents from remark blocks,
Thus only the techniques discussed above can be used to modify these
blocks.,

Conclusion. These few coding examples should prove sufficient to
get the IVY programmer off to a good start. Many other techniques can
be developed with experience, and in general it is easier to do this
with IVY than with most other programming systems. IVY combines the ad-
vantage of being an ideal system both for the beginning coder and for
the virtuoso: for the former because it is a simple system in which it
is almost impossible not to code properly; for the latter because of the

gbundance of sophisticated techniques which are available.

-18k4-~

CHAPTER 9

SUMMARY AND TABLES

This chapter is intended to be a thumbnail sketch of the IVY man-
ual. In it are gathered tables and summaries of the information covered
in the first eight chapters for quick reference purposes. Nothing occurs
here that has not occurred previously, but virtually any topic in the
manual can be found in this chapter quickly and easily; page references

to complete, more detailed discussion are always given.

-185-

~9g1L-

TABLE 9.1

THE IVY CHARACTER SET, CARD PUNCHES, INTERNAL REPRESENTATION

CARD 4020 CARD Lo20 CARD Lo20
CHAR. PUNCE OCT. DEC. _ CHAR. CHAR. PUNCH __ OCT. DEC. CHAR. CHAR. PUNCH OCT. DEC, CHAR.
0] 60 48 0 E 12-5 25 21 E 8 11-3-8 53 43 8
1 1 01 01 1 F 12-6 26 22 F * 11-4-8 54 L *
2 2 02 02 2 G 12-7 27 23 G none none 55 45 y
3 3 03 03 3 H 12-8 30 a4 H none none 56 46 ~
by L ok o4 4 I 12-9 31 25 I none none 57 b7 d
5 5 05 05 5 none none 32 26 x blank none 00 00 blank
6 6 06 06 6 .(period) 12-3-8 33 27 (period) / 0-1 61 k9 /
T 7 o7 o7 7) 12-4-8 34 28) s 0-2 62 50 s
8 8 10 08 8 none none 35 29 B T 0-3 63 51 T
9 9 1 09 9 none none 36 30 + U 0=k 64 52 U
none none 12 10 d none none 37 31 ? v 0-5 65 53 v
= 3-8 13 1 = - 1 40 32 - W 0-6 66 5l W
! 4-8 b 12 " J 111 | 33 J X 0-7 67 55 X
none none 15 13 ' K 11-2 k2 3k K Y 0-8 T0 56 Y
none none 16 14) L 11-3 43 35 L 2 0-9 T 57 2
none none 17 15 o M 11k bhy 36 M 0-2-8 T 58 °
+ 12 20 16 + N 11-5 45 37 N , 0-3-8 73 59 ,
A 12-1 21 17 A ¢ 11-6 46 38 ¢ (0-4-8 ™ 60 (
B 12-2 22 18 B P 11=-7 47 39 P none none 5 61 /
c 12-3 23 19 ¢ Q 11-8 50 40 Q none none 76 62 z
D 12-4 24 20 D R 11-9 51 I R none none i 63 o
none 11-0 52 k2 .(pl.pt.)

See also: List in Chapter 1, pege 17; Table III, Chapter 3, page 66; and Table VIII, Chapter 6, page 151

TABLE 9.2
IVY SYMBOLS

1. Special symbols: A (stored addresses),

L (local references within formulas), X (index registers).

See Chapter 2, pages 28-29.

2. Program defined symbols: One to six alphabetic characters
except A, X, and L. Must be defined on "D" cards unless:

a. Formula name
b. Single character used for renaming index register
c., Name of remark

See Chapter 1, page 17 and Chapter 3, pages 47-49,

3¢ Numbered symbols: a symbol of type 2 followed by numeric
digits. Defined on "S" cards and used only for names of re-
mark and calling sequence blocks. See Chapter 1, page 1§
Chapter 2, page 29, and Chapter 3, pages 6167,

L, Internal IVY symbols: begin with "g" and consist of 0, 1,

or 2 alphanumeric charscters., These symbols are as follows:

SYMBOL MEANING AND USE PAGE REFERENCE
? Sign; address modifier and opera- 69,81
tion (e.g. "+ g," etc.)
Control word; address modifier 82
WA Control word address; address modifier 82
gwe Control word count; address modifier 82
WP Control word position; address modifier 82
Convert arithmetic; operation 69,87
0.4 Convert exponent; operation 69,87
gu Set result; operation 69,87
Set result; operation 69,87

~187-

SYMBOL MEANING AND USE PAGE REFERENCE
#R Square root; operation 69,87
£X Set result; operation 89
#Q "Q" portion; expression modifier 83
#T "T" portion; expression modifier 83
#D,#DA,...#DZ Address; subroutine data blocks 85,110
#cs Address; calling sequence block 84
AL, Address; machine information 85
P2 Address; zero 85
&M Address; quantity to left of "=" 8k
$E Execute; instruction to compiler 115
BJ Jump; instruction to compiler 55, 104
#P Pathfinder; special register 101,103, 10k
SAP Assembly program; subroutine 119
oM Character manipulation; subroutine 154
#DK Disk program; subroutine 152
pLD Loading program; subroutine 119
#MP Microfilm plot; subroutine 147
$¢P Instructions to operator; subroutine 153
) Octal dump; subroutine 129
$PH Punch; subroutine 126
#PR Print; subroutine 131
psw Switch test; subroutine 126
£TP Tape program; subroutine 121
7T Trigger test; subroutine 128

TABLE 9.2 (Continued)

-188-

TABIE 9.3

CARD FORMATS
PAGE

1| Format REFERENCE
%| % % * Min(3) name,ph.(19) no.(4) code(3) group(3) cat(2) of 22-2%

MOOO tapes(2)
B J@B, IfD,REEL, etc. 23-26
S| (M),A(N,),X(N,),L(N,), SMBOL, (N), o . 26
P| S %0

D SYMBdL,SYMBdIFQ,SYMBdL(N1,N2,...,Nn),SYMBdL(N1,...,Nn)=Q1,..., Q 43-57

R{ NAME(P) = HPLLERITH CHARACTERS $g# 61-6k

K| NAME(P) = (CSW, :CSW,:eee:CSH) O4=67

@| INSTRUCTIONS 33

T| TSCW,:TCSW,:eus:TCSH 33=35

A gﬁnPg,F 35-37

I| Algebraic code, etc. 68-117

Li{ Longhand code, etc. Appendices 2,3
F| AD:$B,L:gA,M 38.39

X| NAME ¢F FPRMUIA SET OR BLANK 39-L40

E| sYMBJL = Q1,Q2,...,Qm,SYMB¢L(Q.P) = Qp,Qye00Qy, SYMB@L(T.P)

= Qyens,Qy 21-29

See also Table I, page 42, and Table II, pages 60-61.

-189-

TABLE Q.k4

AIGEBRAIC OPERATIONS

FLOATING POINT FIXED POINT INDEX REGISTER
* * «BX
/ /

// //

+ P + P Boolean
- # - ¢ +
* g * B *
«#R A 1
.fcA o7\ fU
.fCx .fCX BV
«PU «$U

BV BV

See also: Floating point, page 69
Fixed point, page 86
Index register, page 89
Boolean, page 93

RULE: All operations are considered from left to right, i.e., each
operation takes in all expressions so far computed on the
left to the right of a left parenthesis or equal sign, which-
ever occurs latest.

-190-

TABLE 9.5

SYMBOLS, EXCIUSIVE OF MODIFIERS, ALLOWED IN AIGEBRA

A. Symbols allowed on either side of equal sign

TYPE OF SYMBOL MEANING NOTE
SYMB@L Name of data block or first element 1
SYMBAL, nth element of data block 1
NAME Name of "K" block--numbered or not 2
#cs, gcs, Calling sequence block 3
#D,%DA, « . . #DZ Subroutine data blocks 3
BD_,#DA., 000 ,fDZy nth element of subroutine data blocks 3
13 NLA (next loading address) 4
ALk NBA (next block address) 4
£z Zero address 5
Xn Index register n 6

B, Symbols allowed only on right side of equal sign

#L1 FAC (first address for code) 7
1.2 FAD (first address for data) 7
ALS Machine number 7
£16 No. of BCD characters per word 7
M Quantity on left of equal sign 6

NOTES: (Types of symbol modifiers allowed - see Table 9.6):

1. Either side of equal sign: type A; or type E (except "#WwP")
left of equal sign: type A and type B
right of equal sign: "#WP" or type A and one of types C,D, or F,

2. Same types of modifiers as in note 1 with the addition that

type A can occur with "#WA" and "gWC" on left or right of

equal sign.
5. Same types of modifiers as in note 1 except type E is not allowed.
., Either side of equal sign: type A

left of equal sign: +type A and type B
right of equal sign: type A and type F.

-191-

TABIE 9.5 (Continued)

NOTES:
5. Modifiers required.

Either side of equal sign: type A or type A plus "$WA" or "gWC."
left of equal sign: type A and type B
right of equal sign: type A and one of types C, D or F '

6. No modifiers allowed.

T. Type A or type A and one of types C, D or F.

-192-

TABLE 9.6

ADDRESS (OR SYMBOL) MODIFIERS M: "SYMBPL(M)"

gggé TYPE MEANING IEFT OF= RIGHT uF= BOOLEAN FIXED PT, FL.PT,
P A Pth element yes yes yes yes yes
Xn+P A above plus index yes yes yes yes yes
Xn A index register yes yes yes yes yes
An A stored address yes yes yes yes yes
Xn+An A above plus index yes yes yes yes yes
A B fixed pt.expression yes no no yes no
B B Boolean expression yes no yes no no
Q.P C "Q" of double~ no yes yes yes yes
stored no.
M.P. C magnitude of above no yes yes yes yes
Te.P. o "T" of Double- no yes yes yes no
stored no,
M D magnitude of no. no yes yes yes yes
S D sign only of no. no yes no yes yes
R D save low order part no yes . no yes yes
W E control word yes yes yes yes no
FWA E control word yes yes yes yes no
address
#We E control word count yes yes yes yes no
gWp E control word no yes yes yes no
position
S F sWwap no yes yes yes yes

See also pages Th-83

-193-

TABLE 9.7

EXPRESSION MODIFIERS (RIGHT OF EQUAL SIGN ONLY)

MODIFIER MEANING
«fQ.P Put result in "Q" part
«f£T.P Put result in "T" part; may follow only

fixed point expressions

See also pages 83-8k,

19k~

A.

TABLE 9.8

REFERENCE POINT ENTRIES AND BRANCHES

Reference Point Entries

ENTRY

xn(1 ,P)

X (p,1)

.'Z!t-‘b

L .X
n n

FfRM

F¢RM.xn
Fs

FS.X
n

Types of Branches

(x)

(r,)

(FgRrM)
(Fs)

(Ln)Algébra=C
(FORM)Algebra=C
(PS)Algebra=C
(#p,1.)
(#P,FgRM)
(gP,Fs)

(Xm + N)

MEANING

Forward index loop

entry

Backward index loop entry

Iocal L-entry for
Local subroutine.

Formula entry for
set. "FPRM"

Formula subroutine

Formula set entry
code. "FS" o

references within formula
Contents of "$P" go to X o

references within formula
not on "D" card.

c(gp) =X

for references from entire
n '"D" card

Formula set subroutine.C(SP) X,

Ioop on index X to nearest previous loop
entry for gndex Xn

Unconditional branches to L-entry in same
formula, formula in same set, and

formula set,

respectively.

Conditional branches to L-entry in same for-
mula, formula in same set, and formula

set, respecti

vely

Pathfinder branches to local subroutine in

same formula,

formula subroutine in

same set, and formula set subroutine,

respectively

Return to instruct
of subroutine

-195-~

ion after calling sequence

TABLE 9.9

CALLING SEQUENCE CONVENTIONS

(Each entry represents a legal calling sequence word entered between
colons on "K" card or after pathfinder branch)

ENTRY MEANING

BXXX 1,2, or 3 alphanumeric characters in "$WC" portion. Used
for control purposes.

P Parameter algebra expression. Result is computed and 15
placed in "$WA" portion or more, if greater than 2

AD(gwW)+P "AD" any programmer-defined symbol. CW(AD) modified by P
is placed in entire woxrd.

AD(#WA)+P Control word address modified by P is placed in "gwA"
portion.

AD(@WC)+P Control word count modified by P is placed in "gWA"
portion.

AD(gwP) Control word position is placed in "$WA" portion.

AD(P) Contents of AD($WA)+P are placed in "gWA" portion.

In addition, the following compound entries are alloved:

FXKK, P (p<2
PR, AD(BWA) +P
PXXX, AD(EWC) +P
BXXK, AD(BWP) 18
FXxX,AD(P) (C(AD(#WA)+P) fixed pt. <2 ")

-196-

TABLE 9,10

SUMMARY OF CALLING SEQUENCES TO IVY SUBROUTINES

A, PAP

Calling seq. word MEANING

ﬁRDN,F Read in and convert code in file ¥, tape N
B. pTP

#HDX Set tape "X" to high density

BLDX Set tape "X" to low density

#RWX Rewind tape "X" to load point

FULX Rewind tape "X," then unload

EEFX Write end-of-file on tape "X"

PETX Write end-of-tape record on tape "X"

$BBX, P Backspace tape "X" through P records

$BFX, P Backspace tape "X" through P files

#FBX,P Forward space tape "X" through P records

#FFX,P Forward space tape "X" through P files

#RDX, AD(AWA)+P May be last calling sequence word only. If
ID of current record on tape "X" = con-

tents of location specified, #CS1 = 1.
If not, gCSt = 0.

#RDX, AD(#WA)+P: Reads into block "AE" the record with ID =
AE(gWP) c (AD(gwA)+P), from tape "X"

APP Sets "ATP" to run in parallel mode

gsp Sets "$TP" to run in serial mode

For further reference see Table V , page 120(tape numbers), and
Chapter 6, pages 119-126,

Ce ggg

Calling sequence words

£P, AD(SWP):#R Print a diagnostic comment if any indicators
are on, and return control to problem
program

-197~

TABIE 9.10 (Continued)

C. $TT (continued)

Calling sequence words

égffg(sw?) :pI
#N: 21

D. D

Calling sequence word

#DA
SYMB@L(SWP)

E. ﬁPH,gPR

Calling sequence word(s)

¢FiFORMAT(gWP)
REMARK(WP)
VECTOR(gWP)

£PN, PARAM(gWA) +P

#2,MATRIX(#WP): P

MEANING

No print; return to problem program
Print comment and return to IVY if

any indicators on

No print; return to IVY if any indi-

cators on

Dump all date and longhand code
Dump data block or longhand formula

set named

SPR MEANING

Restore page (on-line)
Half-page skip (on line)
Double space (on line)
Restore page (off-line)
Half-page skip (off-line)
Double space (off-line)
Restore page (microfilm)
Half-page skip (microfilm)
Double space (microfilm)
Print remark on-line
Print remark off-line
Print remark on microfilm
Format statement (see
note below)
Print remark as specified
by previous format
Print vector specified by
previous format
Print N parameters as spe-

cified by previous format

SPH MEANING

Insert blank
Insert blank
Insert blank
Insert blank
Insert blank
Insert blank
Insert blank
Insert blank
Insert blank

card
card
card
card
card
card
card
card
card

Punch rem. on-line

Punch rem. off-line
Punch rem. off-line

Same

Punch same

Punch same, or
matrix or array

Ignored

Print matrix (with 1st dimen- Punch same (§2,P
are superfluous)

sion P) as specified by
previous format

-198-

E. $PH,PPR (continued)

Calling sequence word(s)

@A, ARRAY(SWP) :P, P,

VECT@R(#WP) :$D, P
VECTPR(#WP): $Q1 ,P

VECT@R(#WP) : T, P

$2 ,MATRIX($WP) :SD,P.I :P

$2,MATRIX(#WP) : £Q, P,

$2 ,MATRIX(#WP) :$T, P,

SA,ARRAY(#WP):#D, P,
2 3

#A,ARRAY(gWP) : SQ,
P, P

2A, ARRAY(SWP) s'r,
2 3

Note on format statements:

follows:
R|FPRMAT =

where

each "C. "
i

2

:P

2

P

2

TABLE 9.10 (Continued)

SFR MEANING

Print array(ist 2 dimensions
P, P2) as specified by
prev1ous format)

Print both Q and T portions

Print Q portion only of DS
vector, tag length P
Print T portion only of DS
vector, tag length P
Print both Q and T portions
of DS matrix, tag length

P1, 1st dimension P2

Print Q@ portion only of DS
matrix

Print T portion only
of DS matrix

Print both Q and T portions
of DS array,tag length P

1st 2 dimensions P P5

Print Q portion only of
DS array

Print T portion only of
DS array

SPH MEANING

Punch same (¢A,P1 ,
P, are super-
fluous)

Punch same, or ma-
trix or array
Punch same, or ma-
trix or array

Punch same, or ma-

trix or array
Punch same ($2,P
are superfluols

Punch same (¢2,P2
are superfluoiis)

Punch same (SE,P2
are superfluotis)
Punch same ($A,P2,1)>3

are superfluous

Punch same ($A,P P
are superfluous)
Punch same ($A,P2,1)’3

are superfluous

3

the general appearance of a format statement is as

represents one of the following conditions:

-199-

C,CpeesC , (MR NS I By o By, o (IMM.REM)N .S I .F .E g8

TABLE 9.10 (Continued)

% SPR_MEANING SPU_MEANING

P Print on~line Punch on-line

T Print off-line Punch off-line

M Print on microfilm Punch off-line

C Print column indices Ignored

R Print row indices Ignored

L Print in line format Ignored

F Print fixed point num- Punch fixed point nos,
bers as integers as integers

) Print tags of DS nos. Punch tags of DS nos.
in octal in octal

The "IMM.REMi" are remarks consisting of up to 119 hollerith char-
acters, with the single restriction that parentheses must occur in closed
pairs. These remarks are printed preceding the numbers governed by the
format, and are ignored by the punch program.

Each "N.S.I.F.E." field controls the printing or punching of one or

more blocks of numbers as follows:

NUMBER

N Number of blocks controlled by this field.

S Number of blank spaces preceding each number
(ignored by "#PU"). must be < 119,

I Number of integer digits (i.e., digits to the
left of the decimal point). must be < 15.

F Number of fraction digits (i.e., digits to the
right of the decimal point). must be < 15.

E Number of digits in exponent. must be < 15.

For further details, see pages 131-147.

-200-~

TABLE 9.10 (Continued)

F, gvMp
Calling sequence word(s) MEANING
FAFN,P Advance film; if N = 1, set for hard copy;
advance "P" more frames.
$SG:P1:P2 Select grid, horizontal option "P1,"
vertical option "P2."
$1G: XYBDS($WA)+P Valid only after above“entry. ILabel grid,
assuming X . ,X 4 s Y stored
min’ max’ “min’ "max
in that order starting at "XYBDS(gwWA)+P."
¢WRN,REM($WP):R($WA)+P1: Write remark "REM" horizontally (N=0) or
c(sWA)+P2 vertically (N=1) starting at row and
column position specified,
BPFN,M: XC(#WP) : YC(#WP) : Plot XC versus YC, using char. M, and comnnect
XYBDS(#WA)+P:TEMP (gWP) with line if N=1. XYBDS as above;
"TEMP" = block same length as XC,YC
for erasable.
BGA, XYBDS(#WA) +P: XZERP(WA) +P: Generate a pair of axes through XZER@,
YZER@(WA) +P YZER@; XYBDS as above.

See also pages 147-152,
G. PDK

Calling seguence words

PWRN, ID(#WA) +P: DATA(gWP) Write "DATA" block on disk with ID as
specified. N = tape number on
machines with no disk, O otherwise.

RDN , ID{ SWA)+P: DATA(gWP) Read block with ID specified into "DATA."
#RDN, ID(£WA) P
N as above .

H."#@P" has one calling sequence word, of the form
REMARK(gWP)

The remark specified is printed on-line. See page 153.

~201-

TABIE 9.10 (Continued)

I. $CM

Calling sequence word(s)

$SN , REMARK(#W)

1 AD(pWA : :
- AggggAgiigzggﬁéggggg

ACN: AD(ZWA)+P. : REM1(gWP):

AE(SWA)+P;:REM2($WP)

See pages 154-156.

MEANING

Set remark specified to the character
represented by decimal number "N"
(see Table 9.1).

Move N characters from REM1 to REM2,
positions as specifled.

Compare N characters of REM1 and REM2
positions as specified; if equal
#Cs1=1, otherwise $CS1=0.

-202~

APPENDIX 1

MANIPULATING THE SYMBOL TABLE

The main function of this Appendix is to give a detailed descrip-
tion of how the symbol table can be altered and used in computations in-
volving only the IVY algebraic instruction set without recourse to longhand
instructions. More sophisticated computations can be performed using long-
hand instructions, but in general these will not be necessary. Presumably
symbol table manipulations will seldom if ever be used by most programmers;
they are useful only when codes are very long and complicated and extreme
methods of conserving core storage are necessary.

Handling a program which is too large to fit in the machine,

It often happens that the whole of an unusually long program, or one with
a large amount of data, will not fit into core at one time. A code of
this size, however, is quite easy to handle in the IVY system. First, the
code must be organized in a specific fashion: there must be a flow code,

in this case usually called a "master code,"

which is in core at all
times, and which controls access to and conversion of the remainder of

the code, only a fraction of which is in core at one time. In this case

=203~

we agsume that control passes through each of several portions of the
code only once. As an example of this, we shall consider a program con-
sisting of a master code and six formula sets "FSA," "FSB,",...,"FSF,"
to be executed in this order of which only three can occupy core at one

time. The master code for handling such a case can be diagrammed as

follows:

ENTER

READ IN AND EXECUTE FSA, READ IN AND CONVERT

CONVERT FSA,|——=. FSB, FSC FSD, FSE, FSF INTO

FSB, FSC SPACE OCCUPIED BY
* FSA, FSB, FSC

\
EXECUTE FSD,
FSE, FSF —>

If we assume that the six formula sets occupy files 2-7 on tape 2, the

code for doing this looks approximately as follows:

Line No. NOTES

| I |MASTER, {$P, $AP: $RD2,2: $RD2,3: $RD2,4), |

2 C| CADE » EXECUTES A FSA A FSB, FSC 2

3 I|SL3 =FSA(SWA)+1, ($P, $AP: $RD2,5: $SRD2,6:$RD2,7), 3

4 CBDE *@MITTED » EXECUTES * FSD,” FSE,* FSF 4

5 I|(sP, $LD), 5

| | | | (I T T I

-20k4-

NOTES:

1. The master code, appropriately named "MASTER," enters "gAP
to read in and convert "FSA," "FSB," and "FSC."

2. "FsA," "FSB," and "FSC" are executed, the flow of control
being by means of conditional "L" branches and pathfinder
branches peculiar to the program.

3. Next, "$L3," which contains the next loading address (NLA)
for code, is reset to the value it had before "FSA" was
loaded, and the three formula sets "FSD," "FSE," and "FSF"
are read in and converted, covering the previous three for-
mula sets.

4, The second section of the code is executed.

5. At the end of the program, a pathfinder branch to "$ILD" is
executed.,

In addition to the master code, of course, there may be other
formula sets which are always in core, such as subroutines referred to
by both sections of the code. Also, this simple example can easily be
extended to the case where the code must be divided into more than two
sections, It is necessary merely to repeat a similar sequence of in-
structions to that on line 3 as many times as needed.

How to "ping-pong" a code. By "ping-ponging" a code it is meant

that several sections of the code must be repeatedly read in and out of
core since each must be executed more than once, unlike the previous
example., Thus the various sections of the code bounce in and out of
core like a ping-pong ball. To do this, after each section of the code
is converted and executed, it must be written on tape using "$TP;" then
it need only be read in from tape for each succeeding execution. This

method saves considerable compiling time since on successive executions

-205-

the code need not be re-compiled. If we consider again a case in which
a code contains six formula sets, of which only three can fit into core,

and assume each section is to be executed N times, the following diagram

illustrates how the master code should look.

] ENTER I | READ IN FSD, FSE,FSF
‘ FROM TAPE ($TP)

no

TAPE FLAG=0?

O —* TAPE FLAG +

| =TAPE FLAG
[EXECUTE FSD,FSE,FSF

\ WRITE FSD, FSE,
FSF ON TAPE ($TP)
i no READ IN FSA, FSB, READIN AND CONVERT
TAPE FLAG=0P FSC FROM TAPE £SD, FSE, FSF ($AP)
- (sTp) Xl =N?| Yes
'l ‘ '

[+]
READ IN AND CONVERT ("
FSA,FSB, FSC ($AP) WRITE FSA,FSB,FSC Xi+1 =Xl

W———— no ON TAPE ($TP)
EXECUTE FSA,FSB,FSC)—»@E_FLAe:o? o8

We note that a "tape flag" is necessary, so that the master code can de-

tect whether or not the two sections of the code have been written on

tape.

-206-

IVY

DATE

PAGE NAME PROBLEM

2

73|74

77|78|79({80

72

CODE

-

I

MASTER, TF=0, XI{I,N), (LI)TF = NZ,

($P, $AP: SRD2, 2: $RD2, 3: $RD2,4),(L2),

1]

LI, ($P, STP: SRW3: $RD3, T(SWA)+ I: FSA ($WP):

1]

$RD3, T($WA)+ 2. FSB(SWP): SRD3, T(SWA) +3:FSC($WP)),

1]

L2,...

PMITTED * CPDE * EXECUTES * FSA * FSB,AFSC

[

(L3)TF=N2Z, ($P, $TP: $RW3; SWR3, T($WA)+I: FSA (SWP):

[T

$WR3, T(SWA)+2: FSB ($WP). $WR3, T(SWA) + 3: FSC(SWP)),

1]

$L3 = FSA (SWA)+), ($P, $AP.$SRD2,5: $RD2,6: $RD2,7),

(L4}, L3, ($P, $TP: SRD3, T(SWA)+4: FSD ($WP):

1]

$RD3, T(SWA) +5: FSE (SWP): SRD3, T(SWA) +6: FSF ($WP)),

L4, ...

@MITTED * C@DE A EXECUTES * FSD,* FSE,* FSF,

(LS)TF=NZ ,TF=1, ($P, $TP, SWR3 T($WA)+4:

FSD(SWP): $WR3, T(SWA)+5: FSE($WP): SWR3 T{$WA)+6:

FSF(SWP)),

L5,(X1), ($P, SLD),

Figure Al

-207-

The code for doing this is illustrated in Figure Al. Again it is
assumed that tape 2 contains the six formula sets in unconverted form in
files 2-7, and that tape 3 is a blank to be used in the '"ping-ponging"
operation. "T" is a block containing the ID words required by the tape
program. By observing the arrows on the outside of the coding sheet,
one can follow the path of flow as it corresponds to the above diagram.

The methods illustrated in this appendix thus far can be general-
ized, extended, or combined to haAdle virtually any lengthy code that can
be devised. Similar methods can also be used to write blocks of con-
verted code on the disk unit of machines which contain such a device.
The speed of a disk unit is always greater than the speed of tapes, so
this procedure is recommended when possible, The programmer should note
that formula sets are the only units of code which can be written on
tape or disk since only formula set nsmes are contained in the symbol
table. Neither individual formulas nor groups of formula sets under
the control of only two calling sequence words can be written: the for-
mer, because formula names are not contained in the symbol table; and
the latter, because two calling sequence word entries are necessary for
each formula set read or written., Whereas one can write several for-
mula sets onto the assembly tape under control of an "A" card, this is
not possible using "gIP" or "gDK."

Other manipulations of the symbol table are also possible using
various techniques involving the "$WC" and "gWA" modifiers, in addition

to the special locations "gL1," "gL2," "$L3," and "$I4" (see Chapter &,

~208~

page 85). In general, however, manipulations which change the contents
of the symbol table are to be avoided if at all possible since they
might cause unpredictable difficulties in IVY. Therefore no examples

of this type of programming are given.,

-209-

APPENDIX 2

THE 7090 LONGHAND INSTRUCTION SET

The 7090 longhand instruction set is divided into classes accord-
ing to the types of addresses and decrements (if any) allowed. The reader

is referred to the IBM Reference Manual, 7090 Data Processing System, for

descriptions of the operations and coding examples. First in this appen-
dix we shall discuss general addressing conventions, address modifiers,
and other conventions allowed in longhand coding, then the list of allowed
instructions by classes, and finally a coding example will be given.

Addressing conventions. In the description of each class of oper-

ations, the symbol "AD" is used to represent the allowed address symbols
for the particular class. Each class may use a subset of the following

set of address symbols:

SYMBQL MEANING
NAME The symbolic name of a data, remark, or

calling sequence block. This may
be the name of a numbered block.

NAME The nth element of data block "NAME,"

#cs The calling sequence block.

-210~-

¢csn

MEANING

The nth element of the calling sequence
block.

Any of the subroutine data blocks.

The nth element of any of the subrou-
tine data blocks.

Address of instruction with "An"
modifier.

One of the elements of the "§gL" block.

Zero or null address.

Name of an "L" entry.

Formula name,

Formula set name.

Name of an IVY subroutine.
location of current instruction.

Fixed or floating point literal
(Decimal only).

Absolute address equal to the num-
ber N.

In each class of operations, address modifiers(which occur within paren-

theses following the address symbol) are represented by “Mi,

and each sym-

bol is allowed a subset of the following set of modifiers:

My

MEANING
No modifier

P (parameter algebra)

-211=-

M MEANING

i
M, X _ + P (parameter algebra plus index
n
register)

M5 X, (index register)
M, A (stored address)
M X + A (index register plus stored

> 0 ad8ress)
Mg #WP (control word position)
M7 #WC/#WA (control word count or address)

Longhand instructions are separated from one another by colons.
The translation to machine language is strictly one-to-one, i.e., each
entry between colons corresponds to one machine word, except -for certain
entries which represent instructions to the compiler,which will be noted
as they occur. The elements of an instruction are separated from one
another by commas and sets of closed parentheses. The general format of

a longhand instruction is:

: PP(I/Xn) ,AD(M i) ,DCR/CT:

Conventions are explained in the discussion of each class.

General form of a longhand code. Longhand instructions are en-

tered on "L" cards, which may be intermixed with discretion in any desired
manner with "I" cards, to supplement the algebraic code in as great or
small a manner as desired., However, in this appendix we shall consider

longhand formula sets, i.e., complete routines or subroutines coded in

-212-

longhand. The programmer interested only in inserting a card or two of
longhand code into his program should have no difficulty once the larger
concepts have been studied. See restriction 2, page 217.

Longhand codes are divided into formula sets, formulas, and
local entries just as are algebraic codes. The same rules for referenc-
ing discussed in Chapter 5 also apply tq longhand codes., However, the
methods of forming entry points and branches of course differ between
the two systems. Formula set names, formula names, and L-entries pre-

cede the operation at the entry point in parentheses, thus:
(Fs) gp, AD(M,)
(F) gp, AD(M,)
(r,) #p,AD(N,)
In Dbranches to these entries, the name of the entry occurs in the address
of the instruction outside parentheses, modified if necessary, e.g.,
TRA,FS(Mi)
TRA,F (Mi)
TRA,Lh(Mi)
and so on for other types of transfer instructions.

Subroutine conventions. Internal IVY subroutines or subroutines

coded in the algebraic language must be entered by the instruction

TSX(#P), NAME

where "gP" is the pathfinder register and "NAME" is the name of the

-213-

subroutine. On the 7090 the pathfinder register "$P" is synonymous with

index register 3, X3. Thus the following entry is equivalent to the

above:

TSX(X3), NAME

If a subroutine written in longhand is entered by a pathfinder
branch from a portion of the code in algebraic language, or by means of
one of the above instructions, one can use the first instruction of the
subroutine to store the pathfinder contents in the address or decrement

of a specified location "AD" as follows:

(NAME) SxA(gP),AD or (NAME) SXD($P),AD

which, of‘course, are equivalent to the entries

(NAME) SXA(X3),AD or (NAME) SXD(X3),AD

Calling sequences. Calling sequences may be constructed after a

"TSX" to any subroutine by using the pseudo-operation "CSW" and by t'ol-
lowing it with a standard IVY calling sequence word entry, separating

the calling sequence words from each other by colons. For example:
L|TSX(#P) ,NAME: CSW , BABC ,GE(#WP) : CSW, #CT2,CRA($WC) : CSW, 3+ T*GE: ...

The IVY subroutines with variable length calling sequences (namely SAP,
#TP, 30D, #PR, #PH, #MP,#DK, and $CM) require an "HTR" with null address

field following the last calling sequence word. This is to signal the
subroutine that the calling sequence has ended. The compiler automati-

cally inserts this zero word in calling sequences to these routines

-21k-

written in the algebraic code, but this is not done automatically in the
longhand system because, as mentioned previously, longhand code is trans-
lated in a one-to-one fashion. Thus, for instance, to print a vector,

the following statements should be used:
L|TsX(#P),#PR:CSW, #F , FPRMAT(#WP) : CSW, VECTER($WP) : HTR: o o

Definition of "#D" blocks. To define "$D" blocks at the beginning

of a formula set coded in longhand, one must enter these definitions be-
tween a single set of colons immediately following the first instruction

of the formula set, for example:

L|(Fs)sxD(#P),AD: $D(4),8DC(3) = 2.156,3.172,5.171,
#DH(5,9,10),8DM(50) = 5.152,(S)47,5.213,5.215: ...

The format for defining "#D" blocks is otherwise the same as the format
for defining them on "I" cards, discussed in Chapter 5, pages 110-112.
Since "$D" definitions represent instructions to the compiler, a word
of code is not, in this case, assembled to correspond to the definitions
between the pair of colons.

Renaming. One may rename an index register with an alphabetic sym-
bol in the same manner as on "I" cards, by entering between colons as
follows:

:*SYMBPL = X

Again, since this entry represents an instruction to the compiler, no in-

formation is assembled.,

Storing addresses. The "An" symbols may be used in the address

21 5=~

fields of "store address"” instructions, and the address being stored will
be placed in instructions having addresses modified by this same "An" sym=
bole In longhand coding, instead of the entry "An.m" specifying m
store address instructions, one must instead write down consecutively,
2ll m instructions. The number of store address instructions entered
must equal the number of instructions in which the address is stored.
For example:

L|cIA,FRN(#W): ADD,FRNX(X1) : STA,A1:STA,A1:STA,Al: ...

« «LDQ,FRN(X2+A1) : FMP, FRN(X3+A1) + 0 o : STP, FRN(X2+A1) : 0

Here three "STA" instructions with address "A1" are present, and three
instructions with addresses modified by "A1" are also present. Note
that instructions in which addresses are stored must occur sequentially
after the "STA" instructions referring to them. The "STA" instructions
must occur sequentially together, as in the above example.

In longhand coding, one can also store addresses in instructions
at or near local, formula, or formula set entries, or near the "STA" it-
self, by using the name of the entry or "*" with appropriate modifiers.

"An" is not needed in such a case, For example:
L|(11)CLA,FRN(X1):SUB,FRN(X2) : STP,FRN(X3): e o o
« e «CLA,FRN(#W) : ADD, FRNX(X1) : STA,L1:STA,L1(1):STA,L1(2): ...
This technique can thus be used to store addresses in a backward direc-

tion, if desired.

Storing decrements, prefixes, tags, and left half of MQ. If these

1"

items are stored in code, then "An symbols, which are reserved for "STA"

-216-

alone, cannot be used., Instead the addresses of "STD," "STP," "sTT,"
and "SLQ" instructions must contain the name of a local, formula, or
formula set entry, or the "¥," with appropriate modifiers, in the same

manner as "STA" instructions which do not use "An" symbols.

Further restrictions on longhand coding. The following check list

summarizes the remaining restrictions on longhand coding:

1, To repeat what was said previously, only three index registers,
X1, X2, and X3, are allowed in 7090 longhand coding.

2., The programmer should note that X3 is used by the algebraic
code not only to simulate the pathfinder, but also to simulate
index registers Xk, X5, ete. If the longhand code consists
only of a few cards inserted in the middle of an algebraic
code, the programmer must save the contents of X3 or of the
last index register above X3 to which he has referred, to en-
sure that its previous contents, if needed after the longhand
segment, are not destroyed, This can be done in two ways:

a. In the algebraic code:
Il....,Tl = Xn,
L]|+ees(longhand code)...
IIXn = T1,ooo

where "X " is the last index register above X3 referred

to in thé algebraic code and "T1" is some suitably
chosen temporary location; or
b. In the longhand code:
Il.e...(Algebraic code)
L|SXA(X3),T1: 40.(Longhand code)...

L

eeeetIXA(X3),T1: ...

I

seee(Algebraic code)

The previous contents of X3, simulating some higher index
register, are preserved by the longhand code.

-217-

In general, short longhand code inserts in algebraic code should
be used with great discretion. Because of the simulation of
extra index registers by X3, one must, as remarked sbove, take
great care not to destroy the contents of this index register.
Branching between such "pockets'" of longhand code and the alge-
braic code should also be avoided. The unwary coder should in
general follow these rules:

a. Short longhand inserts in a predominantly algebraic code
should not use X3 and should not be entered or left Dby
branches to algebraic code, without the use of great care.

b. Prefersebly, the smallest unit of longhand code in an alge-
braic code should be at least a formula.

3. Only one index register can be specified in an instruction, i.e.,
the "oring" feature of the 7090 is not permitted. This is be-
cause of the possibility of wiring the 7090, at some future date,
to contain seven index registers in which case this feature
would no longer be present.

b, An IVY 7090 longhand instruction, together with its address,
modifiers, etc., must be complete on one card. For all practi-
cal purposes, the end of the card is treated as a colon. Thus,
the last instruction on a card need not be followed by a colon.

Class 1., Arithmetic operations

General format: ¢P(I),AD(Mi)
The "I" is entered if indirect addressing is desired.
aD(M,) = NAME(MOM1M2M5MuM5M6)*,NAMEn(MOM1M2M§), fos(u MM M,),
ges, (MM, M2r43) , $D(M0M1M2M3) , ¢Dn(MOM1M2M5) » BL (M),
$Z(MOM1 MZMSMth) , Ln(MOM1 M2M3Ms) , F(MOM1 M2M3M§) ,

FS(MOM1 M2M5M5M6) ,*(MOM1 M2M5) s X,N(M3) .

*
This notation means that any one of the modifiers shown is permitted.

-218-

OPERATIONS IN CLASS 1

MNEMONIC MEANING "X" IF LITERAL ALLOWED
ACL Add and carry logically X
ADD Add (fixed) X
ADM Add magnitude (fixed) X
ANA "And" to accumulator (Boolean) X
ANS "And" to storage (Boolean)

CAL Clear and add logically X
CAS Compare accumulator to storage X
ClA Clear and add X
CIs Clear and subtract X
DVH Divide or halt (fixed) X
DVP Divide and proceed (fixed) X
ERA Exclusive "or" to accumulator X
(Boolean)
FAD Floating add X
FAM Floating add magnitude X
FDH Floating divide or halt X
Fbp Floating divide and proceed X
FMP Floating multiply X
FSB Floating subtract X
FsSM Floating subtract magnitude X
IIs Invert indicators from storage X
LAS Logical compare accumulator and X
storage
ICHA Ioad channel A
ICHB Load channel B
IDI Load indicators X
1DQ Ioad MQ X
MPR Multiply and round (fixed) X
MPY Multiply (fixed) X
MZE Minus zero (prefix only) X
NzT Storage not-zero test
gFT Off test for indicators X
@NT On test for indicators X
#RA "or" to accumulator (Boolean) X
#RS "or" to storage (Boolean)
#s1 "or" storage to indicators X
PZE Plus zero (prefix only) X
RCHA Reset and load channel A
RCHB Reset and load channel B
RIS Reset indicators from storage X
SEM Subtract magnitude (fixed) X
SCHA Store channel A X

-219-

MNEMONIC MEANING "X" IF LITERAL ALLOWED

SCHA Store channel A

SCHB Store channel B

S1Q Store left half of MQ

SIW Store logical word

STD Store decrement

STI Store indicators

STL Store location counter

sTg Store

STP Store prefix

STQ Store Mg

STR Store location and trap

STT Store tag

STZ Store zero

SUB Subtract (fixed) X

UAM Unnormalized add magnitude X

UFA Unnormalized floating add X

UFM Unnormalized floating multiply X

UFS Unnormalized floating subtract X

USM Unnormalized subtract magnitude X

ZET Zero storage test

EXAMPLES:

EXAMPLE MEANING
sTT,*(4) Store tag in fourth instruction following
ZET,$CS1 Test contents of "SCS1" for zero
CLA,-3,25613%+2 load indicated literal into accumilator
1DQ,4{(X3) Load C(k - C[X3]) into MQ

Class 2. Shift and sense operations

General format: ¢P,AD(Mi)

where AD(Mi) = $Z(MOM1M2M3b4uM5),N(MOM5)

-220-~

MNEMONIC

ARS
IGL
IGR

IRS
MSE
PSE
RQL
SPR
SPT
SPU

EXAMPLE

A1S,20
ALS,(20)

LGL, 30(x2)
LGL, (X2+30)
IGL, #Z(X2+30)
PSE,96

MSE, 100

OPERATIONS IN CIASS 2

MEANING

Accumulator left shift
Accumulator right shift
Iong logical left shift
Long logical right shift
Iong left shift

Long right shift

Minus sense

Plus sense

Rotate MQ left

Sense printer, channel A
Sense printer test, channel A
Sense punch, channel A

EXAMPIES:

MEANING

Shift accumulator left 20

Same as above, Note alternstive form
Logical left 30, modified by C(X2)
Same as above

Same as above

Turn off all sense lights

Test sense light 4

Class 3, ILoad and Store Index Operations

General format: ¢P(Xn),AD(Mi)

where: "Xn".represents the operand index reigster

AD(M,) = NAME(M M MM),NAME (MMM,),gCs(MM,),
ges, (MM,), #D(MM,), #D_ (MM,), 8L, (M),

¢z(MOM1 MLL) , Ln(MOM1Mh) SF(MM, Mu) ,Fs(1v101~41 MuM6) ,*(MOM1) .

-221=-

OPERATIONS IN CLASS 3

MNEMONIC MEANING
LAC Load complement of address in index
IDC Ioad complement of decrement in index
LXA Load index from address
1XD Ioad index from decrement
PAC Place complement of address in index
PAX Place address in index
PDC Place complement of decrement in index
PDX Place decrement in index
PXA Place index in address
PXD Place index in decrement
SXA Store index in address
SXD Store index in decrement
EXAMPLES:
EXAMPLE MEANING
1XD(X1) , NAME(gWP) Count of control word to XI
1AC(X2) ,NAME($WP) Complement of control word address
to X2
PXD Clear accumulator
PAX(X3) Address of accumulator to X3

Class 4. Tape Manipulation Operations

General format: @P, AD(M,)

where: AD(Mi) = N(MOM3),¢Z(M2M3MhM5).

OPERATIONS IN CLASS k4

MNEMONIC MEANTING
BSFA Backspace file, channel A
BSFB Backspace file, channel B
BSRA Backspace record, channel A
BSRB Backspace record, channel B
REWA/B Rewind, channel A or B
RTBA/B Read tape binary, channel A or B

-222-

MNEMONIC

MEANING

RTDA/B Read tape decimal, channel A or B

RUNA/B Rewind and unload, channel A or B

SDHA/B Set density high, channel A or B

SDLA/B Set density low, channel A or B

WEFA/B Write end-of-file, channel A or B

WIBA/B Write tape binary, channel A or B

WIDA/B Write tape decimal, channel A or B
EXAMPLES:

EXAMPLE MEANING

SDiB, 3 Set tape B3 for low density

WEFA, #2(A) Write end-of-file on tape, address

stored

Class 5. Special Sense Operations

General format: ¢P,$Z(Xn)

MNEMONIC

CHS
CIM
cgM
DCT
EFTM
ESTM
ETM
FRN
LBT
LFTM
LT™M
PBT
RCT
RND
SsM
SSP

Warning note:

OPERATIONS IN CLASS 5
MEANING

Change sign

Clear magnitude
Complement magnitude
Divide check test

Enter floating trap mode
Enter select trap mode
Enter trapping mode
Floating round

Low-order bit test

Ieave floating trap mode
Ieave trapping mode
P-bit test

Restore channel traps
Round

Set sign minus

Set sign plus

Care should be used in entering any of the trapping

modes, since IVY occupies lower core; and attempts to set up trapping
routines there may destroy parts of IVY,

-223-

Class 6, Convert Operations

General format: @P,AD(M i) ,N

where AD(M,;) = NAME(MM,M_M.M, M) NAME, (MM MMM MS),
¢Z(M1M2M5M,+M5) ,#cs/ ,<e§csn(M01~/11 M2M5) ,

#D /$Dn(MOM1M2M3) .

Note: These operations are not indexable. Xn can be only O or X1, and
represents a special operation. See T090 manual.

OPERATIONS IN CIASS 6

MNEMONIC MEANING
CAQ Convert by addition from MQ
CRQ Convert by replacement from MQ
CVR Convert by replacement from AC

Class Te
This class consists of the single operation ENB, Enable from Y.
The format is
ENB(I),AD(M,)
where "(I)" is entered if indirect addressing is desired. The allowed

"AD(M,)" are the same as for class 1 except that modifiers Mg and M7
are ndt allowed, and the form "N(MOMB)" is not allowed.

Class 8. Transfer and execute operations

General formet: ¢P(I),AD(Mi)
where "(I)" is entered if indirect addressing is desired;
AD(M i) = $z(MOM1M£M§M,+M5) , Ln(MOM1M2M3MhM5) ,
F/FS(MOM1M2M§MhM5) ,*(MOM1 M2M31ﬁ4M5) .

-224 -

MNEMONIC

HIR
TCH
TCNA/B
TC@A/B
TEFA/B
TIF
TIg
TLQ
TMI
TNg
TNZ
TEV
TPL

TQP
TRCA/B

TZE
XEC

EXAMPLE

TNZ,*(3)

TCPA, *

TPL, (X3+3)

TRA,L2(5)

OPERATIONS IN CIASS 8

MEANING

Halt and transfer

Transfer in channel

Transfer on channel A/B not in operation
Transfer on channel A/B in operation
Transfer on end-of-file, charmel A/B
Transfer if indicators off

Transfer if indicators on

Transfer on MQ less

Transfer on minus

Transfer on no overtlow

Transfer on non~zero

Transfer on overflow

Transfer on plus

Transfer on MQ overflow

Transfer on MQ plus

Transfer

Transfer on redundancy check, channel A/B
Trap transfer

Transfer on zero

Execute

EXAMPLES:

MEANING

If accumulator is not zero, transfer to
third instruction following

If channel A in operation, transfer to
this location

Return to third word of calling sequence
if accumulator is plus

Transfer to fifth instruction following
"12" en,tx'y

-225-

Class 9. Indicator operations

General format: ¢P,AD(Mi)

where AD(Mi) = SZ(MO Mh),N. (18 bit address)

MNEMONIC

IIL
IR

RIL
RIR
RNT
STL
SIR

OPERATIONS IN CLASS 9

MEANING

Invert indicators, left half
Invert indicators, right half
Left half indicators, off test
Left half indicators, on test
Right half indicators, off test
Reset indicators, left half
Reset indicators, right half
Right half indicators, on test
Set indicators, left half

Set indicators, right half

EXAMPLES

Assume GE = B(T77777),TH = B(110623)

EXAMPLE
RNT, (GE)

SIL,(TH)
SIR,125713

MEANING

Skip next instruction if all right
indicators are on
Set left indicators to 110623
Set right indicators to 12571 10
or 365421g

Class 10. Class 10 consists of the single operation "STA". This in-

struction has the same format as those in class 1, except that the

address "An(Mo)" is also allowed.

Class 11. Index testing and incrementing transfers

General format: OP(Xn),AD(Mi),D

where "Xn" is the index register operand;

~226-

AD(Mi) = Lh(MOM1Mh),F/FS(MOM1Mh),*(MOM1Mh).On "TsX," also #SR

D = immediate decrement = NAME(MOM1M7), NAMEn(MOMl),

SZ(MOM1),N. Decrement not allowed on "TSX".

OPERATIONS IN CLASS 11

MNEMONIC MEANING
TIX Transfer on index
TNX Transfer on no index
TXH Transfer on index high
TXT Transfer with index incremented
TXL Transfer on index low
TSX Transfer and set index
EXAMPLES:
EXAMPIE MEANING
TSX($P),ALD Pathfinder branch to "$LD"
TXI(X1),*(1),1 Increment X1 by 1 and go to next
instruction
TXL(Xx2),L1, If index X2 is less than or equal
NAME(gwC) to the count of "NAME," go

to "L1" entry

Class 12, Variable length operations

General format: ¢P,AD(M1),N
where AD(Mi) = NAME (MOM1M2M3MAM5),NAMEn(M0M1M2M5),
gos/ges, (MM,), #D/¢D (M M, M),
¢z(M0M1M2M3M¢M5),x,N(M3)

OPERATIONS IN CLASS 12

MNEMONIC MEANING
VDH Variable length divide or halt
VDP Variable length divide and proceed
VM Variable length multiply

-227-

Class 13, Miscellaneous operations using no address

General format: ¢P,AD(Mi)

AD(Mi) are the same forms as allowed in class 1, but since
addresses are not used in these instructions, no
error checking is performed.

OPERATIONS IN CLASS 13

MNEMONIC MEANING
HPR Halt and proceed
IIA Invert indicators from accumulator
NgP No operation
PAT "or" accumulator and indicators
PAT Place accumulator in indicators
PIA Place indicators in accumulator
RIA Reset indicators from accumulator

Class 14. Input-output channel commands

General format: ¢P(I),AD(M1),CT

AD(Mi) = same as class 1, except Xn = nmull or X2
(for transmit or no transmit)

CT = same as decrement of class 11
OPERATIONS IN CLASS 1k
MNEMONIC MEANING
Igco Input-output under count control and disconnect
Ifcp Input-output under count control and proceed
IgRP Input~-output of a record and proceed
I¢CT Input-output under count control and transfer
IPRT Input-output of a record and transfer
I¢SP Input-output until signal and proceed
IfsT Input-output until signal and transfer

Coding example:
LIWTBA,3:RCHA,L1:TcﬁA,*:...:(L1)I¢CT,NAME,NAME(¢wc)

-228-

The block "NAME" is written on tape 3.

Class 15, Miscellaneous sense and input-output operations

General format: ¢P,(Xn)

OPERATIONS IN CLASS 15

MNEMONIC MEANING

BTTA/B Beginning of tape test, channel A/B
ENK Enter keys

ETTA/B End of tape test, channel A/B

Igr Input-output check test

RCD Read card reader, channel A

RDCA/B Reset dats channel A/B

RPR Read printer, channel A

SLF Turn sense lights off

SLNY Turn on sense light Y(¥=1,2,3, or 4)
SLTY Test sense light Y(¥=1,2,3, or 4
SWTZ Test sense switch 2(2=1,2,3,4,5, or 6)
WPB Write printer binary, channel A

WFD Write printer decimal, channel A
WPU Write punch, channel A

Coding Example:

To restore paper in channel A printer, assuming Share 2 board:

L|WPD:SPR,1:TCPA,*: ¢u .

Class 16, Exchange operations

General format: @P

OPERATIONS IN CLASS 16

MNEMONIC MEANING
XCA Exchange contents of accumulator and MQ
XCL Exchange logical contents of accumulator
and MQ

~229-

Class 17. Immediate index loading operations

General format: ¢P(Xn),AD(Mi)

"

where "Xn is the operand index register

AD(Mi) = immediate address = NAME(MOM1M6M7),

8D, (MM,), B2(M,,M,), N

OPERATIONS IN CLASS 17

MNEMONIC MEANING
AXT Address to Index True
AXC Address to Index Complemented

Coding example: To set a block to zero

L|AXC(X1),NAME(#WC) : STZ , NAME(X1) : TXI(X1),%(1),1:TXH(X1) ,%#(=2),0: a0 e

Summary. The following table is a list of mnemonic operations
in alphabetical order, giving the class to which each operation belongs.,
This table can be used both to find which mnemonics are allowed as well

as to find to which class a given operation belongs.

-230-

-lee-

TABLE A2
ALIOWED MNEMONICS AND CLASS OF OPERATIONS

CILASS OP CIASS OP CIASS OP CIASS OP CIASS OP CIASS OP CIASS OP

1 DVH 1 I¢RP 14 MZE 1 REWA L SLF 15 TCPA 8 UFA
1 VP 1 IPRT 1k NgP 13 REWB b SLNY 15 TCEB 8 UM
1 EFTM 5 Igsp % NZT 1 RFT 9 SIR 1 TEFA 8 UFS
2 ENB 7 I 1 PAT 13 RIA 13 SLTY 15 TEFB 8 UsM
1 ENK 15 igr 15 #FT 1 RIL 9 SIN 1 TIF 8 VDH
1 ERA] LAC 3 oNT 1 RIR 9 SFR b TIg 8 VDP
2 EST™ 5 1AS 1 #RA 1 RIS 1 SFT L TIX 11 VIM
17 ETM 5 1BT 5 #RS 1 RND 5 SPU L TIR 8 WEFA
17 ETTA 15 ICHA 1 @s1 1 RNT 9 ssM 5 TMI 8 WEFB
4 ETTB 15 ICHB 1 PAC 3 RFR 15 SSP 5 TNG 8 WPB
L FAD 1 1oc 3 PAI 13 RQL 2 STA 10 TNX 11 WED
L FAM 1 1DI 1 PAX 3 RTBA b STD 1 TNZ 8 WU
L FDH 1 1DQ 1 PBT 5 RTBB b STI 1 TV 8 WIBA
FDP 1
15 FMP 1 LFT 9 PIC 3 RTDA b STL 1 TPL 8 WrBB
14 FRN 5 LFTM 5 PDX 3 RTDB h ST@ 1 TP 8 WIDA
1 FSB 1 16L 2 PIA 13 RUNA L STP 1 TQP 8 WIDB
6 M 1 IGR 2 PSE 2 RUNB L STQ 1 TRA 8 XCA
1 HFR 13 LLS 2 PXA 3 SBM 1 STR 1 TRCA 8 XCL
5 HIR 8 LNT 9 PXD 3 SCHA 1 STT 1 TRCB 8 XEC
1 ITA 13 IRS 2 PZE 1 SCHB 1 STZ 1 TSX 11 ZET
SUB 1
5 IIL 9 LM 5 RCD 15 SDLA L SWTZ 15 TTR 8
1 IR 9 IXA 3 RCHA 1 SDIB 4 SXA 3 TXH 11
5 1IS 1 LXD 3 RCHB 1 SDEA L SXD g TXI 1
6 IECD 14 MPFR i RCT 5 SDHB L TCE TXL 1
6 IfcP 14 MPY 1 RDCA 15 SIL 9 TCNA 8 TZE 8
5 ger b NSE 2 RDCB 15 SIR 9 TCNB 8 UAM 1

longhand coding example. The following longhand example is equi-

velent, on the 7090, to the "Mix cross sections” code in Chapter 4, page
T8. The example should be self-explanatory when compared with the alge-

braic version.

2 | RUN 72]

¢] MIX * CR@SS A SECTIGNS

L{(MX)SXA ($P), L. % T=XI. #SeX2: #M=X3

AXC (M), I (L5)CLA,MS({M): PAC(S): TXL(S).LI,0

CLA,C(SWP): ADD, CXX(M). STA, Al: STA, Al: STA, Al

AXC(I), 1: {L6) STZ, C(IT+AN:TXI{I),* (1), =1 TXH(I), L6, ~CXX2—}

(L2) CLA, MN(S): PAC(I).LDQ, MDV(S): FMP.EV: ADD, |.0: ST@, T!

T™MI, L3

LDQ, MD(S): FMP,Ti: SLW,TI: CLA, C($WP). ADD, CXX(I):STA, A2

AXC{I), 1: (L7)LDQ, Ti: FMP, C(I+A2): FAD,C(I+A1): ST, C(I+Al): TXI(I),*(i),-!

TXH(I), L7,-CXX2-I

CLA, MD(S): TMI, LI

TXI(S),L2,-|

(LI)TXT (M), * (1),—1: TXH(M), L5, -MM-I.CLA,ICT: TNZ,L4

TSX($P), SPR: CSW , $F, FMI($WP): CSW, $A,C(SWP): CSW, HM. CSW, GM: HTR

(L4)YAXT(X3), % TRA,(X3+1)

(L3)TSX($P), $@P: CSW, EP2 (SWP)

Internal formats on the 7090, The formets of internal words on

the 7090 are important if the programmer is to know how to handle them

using the longhand instruction set. These formats are as follows:

-232a

1.

2a.

3

Floating point words:

sTe[* [r 1

l
0l 89 35

where S = the sign bit; E = exponent + 2008;
F = normalized fraction; T = tag, if any.

Fixed point words:

[sJoooooo00] N j
01 89 35

where S = the sign bit; the next eight bits are always
zero; and N is the fixed point number of 27 bits or
less, right adjusted so that the low order bit occupies
position 35.

Fixed point double~stored words, tag length P:

[SJo0000000] Q | 1]
ol 89 35-P 35

where S = the sign of "Q"; Q = the "Q" portion of 27-P
bits or less, right adjusted so that the low order bit
occupies position 35-P; and T = the "T" portion, of P

bits or less, right adjusted so that the low order bit
occupies position 35.

Calling seguence words:

| $XXX | $WA]
0 17 18 35

vhere "SXXX" is the BCD representation of the characters
"XXX", right adjusted so that the last character loaded
occupies bit positions 12-17; and "$WA" represents the
quantity, if any, in the "$WA" portion, right adjusted
so that the low order bit is in position 35,

Control words, in symbol table and calling sequences:

[sloo] swc [F $wa |

0123 1718 202! 35

-233.

where "S" is the sign bit, minus if "gWA" gives the
the address of a table of control words (e.g. for
numbered symbols) or of a particular control word
(renamed blocks); "#WC" is the count of the block;
"p" is the control word flag, having values as

follows:
F MEANING
0 data block
1 longhand code block
2 algebraic code block
] remark block
L index register symbol
5 not used
6 calling sequence block
T not yet defined as to content

"$WA" is the address of a control word or of a table of
control words, or the base address of the named block
minus one.

-234-

APPENDIX 3

THE 7030 LONGHAND INSTRUCTION SET

Like the 7090 instruction set, the 7030 set is divided into
classes according to the types of addresses allowed. As a general rule
these classes follow the divisions of 7030 operations according to type,

as well. The reader is referred to the IBM Reference Manual, 7030 Data

Processing System, for descriptions of the operations and coding examples.

The organization of this appendix will follow that of Appendix 2 as
closely as possible.

Addressing conventions. In the description of each class of

operations, the symbols "AD," "AE," etc., are used to represent the al-
lowed address symbols for the particular class. Each class may use a Sub-

set of the following set of address symbols:

SYMBOL MEANING
NAME The symbolic name of a data, remark, or

calling sequence block. This may
also be the name of a numbered block

NAMEn The nth element of data block "NAME"
gcs The calling sequence block.

-235-

SYMBOL

X
n

gP
#s

n

System symbols.

accumulator, factor register, etc., are addressable, and the'gsn

MEANING
The nth element of the calling sequence
block
Any of the subroutine data blocks

The nth element of any of the subroutine
data blocks

Store address sywbol

One of the elements of the "$L" block

Zero or null address

Neme of an "L" entry

Formula name

Formula set name

Name of an IVY subroutine
Location of current instruction

Fixed or floating point literal
(decimal only)

Absolute address equal to the number N

Absolute address equal to the value
of parameter algebrs P

Address of nth index register
Address of the pathfinder register

Address of system symbol n

On the 7030, the special registers such as the

symbols

provide the ability to address these registers in any instruction.

-23%6-

Table A3.1 lists the system symbols, their meaning, and the absolute ad-
dress which will be assembled when these symbols are specified. The
address is given in the form "word address.bit address". In instruc~
tions which have less than a 24-bit address field, some of these ad-
dresses must be truncated to the nearest half or full word address to

fit the instruction concerned.

TABLE A3.1

SYSTEM SYMBOLS USED IN 7030 LONGHAND

SYMBOL MEANING ADDRESS
$so location of zero 0.0
gs1 interval timer 1.0
gs2 time clock 1.28
$S3 interrupt address 2.0
gsk upper boundary 3.0
$S5 lower boundary 3432
gs6 boundary control bit 3.57
gs7 maintenance bits 4.0
$s8 channel address 5.12
$59 , other CPU 6.0
$510 left zeros counter T17
#s11 all ones counter Tohh
gs12 left accumulator 8.0
gs13 right accumulator 9.0
gs1h sign byte register 10,0
$S15 indicator register 11.0
gs16 mask register 12.0
#s17 remainder register 13.0
$518 factor register 14.0
gs19 transit register 15.0

In addition, the index registers can be directly addressed by using

the symbols Xn" (X0,X1,...,X15) outside parentheses.

Address modifiers. In each class of operations, address modifiers

-237=~

o

(which occur within parentheses following the address symbol) are repre=-

sented by "M,", and each symbol is allowed a subset of the following set

i

of modifiers:

M, MEANTNG
Mo no modifier
M, P (parameter algebra)
M, X+ P (parameter algebra
plus index register)
My X (index register)
M, A (stored address)
M5 X+ An (index register
plus stored address)
Mg $WP (control word position
M, gic /@A (control word count

or address)

If parameter algebra appears as a modifier (MI’M2)’ the result of the
perameter algebra modifies an address field appropriate to the instruc-
tion, e.g., 18 bits in floating point, 19 bits in branches, and 24 bits
in VFL. In the description of operations by classes, each description
contains notes on how parameter algebra modifiers are handled in the

particular class.

Operation modifiers. Certain classes of operations may be fol-

lowed by modifiers, which directly modify the operation itself. Opera-

tion modifiers "¢i" follow the operation mnemonic enclosed in

-238-

parentheses, These modifiers are as follows:

95 MEANING

¢O no modifier

¢1 N/U (normalized or unnormalized)

¢2 M (minus modifier)

¢5 MA (minus absolute modifier)

@, A (absolute modifier)

¢ MD,F,B (MD = mode = B,BU,D, or DU; F and B =

> parameter algebra)

¢6 I (immediate modifier)

¢7 V+I/V*IC/V+ICR (progressive indexing
modifiers)

¢8 bbbb (four bit binary connective)

¢9 IND(indicator mnemonic — see Class 9 for
list).

¢1o I/B/BI (immediate, backwards, and back-

wards immediate modifiers)

¢11 X_/P(index register or parameter algebra
count for transmits)

Longhand instructions are separated from one another by colons.,
The translation to machine language is strictly one-to-one, i.e., each
entry between colons corresponds to exactly one machine instruction
(which may be a full or half word). The elements of an instruction are
separated from one another by commas and sets of closed parentheses.

The general format of a longhand instruction is:

=239~

:@P(8,) ... (4,),AD(M,), AB(M) :

Conventions are explained in the discussion of each class.

General form of a longhand code. Longhand instructions are entered

on "L" cards, which may be intermixed with discretion in any desired man-
ner with "I" cards in order to supplement the algebraic code in as great
or small a manner as desired. However, in this appendix we shall consider
longhand formula sets, i.e., complete routines or subroutines coded in
longhand. The programmer interested only in inserting a card or two of
longhand code into his program should have no difficulty once the larger
concepts have been studied.

Longhand codes are divided into formula sets, formulas, and local
entries just as are algebraic codes. The same rules for referencing dis-
cussed in Chapter 5 also apply to longhand codes. However, the methods
of forming entry points and branches of course differ between the two
systems. Formula set names, formula names, and L-entries precede the

operation at the entry point in parentheses, thus:
(Fs)gp, AD(M,)
(F)gp,AD(M,)

(r,)¢p,AD(M,)

In branches to these entries, the name of the entry occurs in the address
of the instruction outside parentheses, modified if necessary, e.g.,
B,FS(Mi)

B,F(Mi)

-2}40-

and so on for othep types of branch instructions.

Subroutine conventions. Internal IVY subroutines or subroutines

coded in the algebraic language must be entered by the two instructions
LVI(gP),*:B,NAME

where "$P" is the pathfinder register and "NAME" is the name of the sub-
routine., On the 7030, the pathfinder register "$P" is synonymous with

index register X15. Thus the following entry is equivalent to the above:
WI(X15),%:B,NAME

If a subroutine written in longhand is entered by a pathfinder
branch from a portion of the code in algebraic langvage, or by means of
one of the above instructions, one can use the first instruction of the

subroutine to store the pathfinder contents in some specified location,

if desired, thus:

(NAME)SV(§P),AD(M,) or (NAME)SV(X15),AD(M,)

Calling sequences. Calling sequences may be constructed after a

pathfinder branch to any subroutine by the use of the pseudo-operation
"CSW," as in 7090 longhand; for example:
L|IVI($P),*:B,NAME:CSW,$ABC,GE($WP) : CSW, #CT2,CRA(PWC) :CSW, 1+TH: o 4 s

The IVY subroutines with variable length calling sequences (namely $AP,
$TP,$0D, $PR, #PH, #MP, $DK, and $CM) require a "CSW" with no fields follow-
ing it after the last calling sequence word containing some sort of

entry. The compiler automatically inserts this zero word in calling

-241-

sequences to these routines written in the algebraic code, but this is
not done asutomatically in the longhand system because, as mentioned pre-
viously, longhand code is translated in a one-to-one fashion. Thus, for

instance, to print a vector, the following statements should be used:
LivI(gP),$:B,gPR:CSW,$F ,FPRMAT($WP) :CSW , VECTPR(FWP) : CSW: o0 s

Calling sequence words and pathfinder branches take up full words
on the 7030 when translated. Thus, as a general rule, one should enter
pathfinder branches in any alternative exits from a subroutine; this
must be done when the subroutine is coded in the algebraic language.
Longhand subroutines, of course, can be coded to take half word exits
into account, if desired.

Definition of "#D" blocks. Definitions of "gD" blocks in longhand

code must be entered between a single pair of colons immediately follow-

ing the first instruction of the formula set; for example:

L (Fs)sv(sp,AD(Mi):$D(h),¢nc(3) = 2.156,3.172,5.171,
$DH(5,9,10),#DM(50) = 5.152,(8)47,5.213,5.215: ...

The format for defining "$D" blocks is otherwise the same as the format
for defining them on "I" cards, discussed in Chapter 5, pages 112-11k,
Since "gD" definitions represent instructions to the compiler, a 7030
instruction is not, in this case, assembled to correspond to the informa-
tion between colons.

Renaming. One may rename an index register with an alphabetic sym~

bol in the same manner as on "I" cards, by entering between colons as

-242-

follows:

1*SYMBPL = X,
Again, since this entry represents an instruction to the compiler, no in-
formation is assembled.

Storing addresses. The "An" symbols may be used in the address

fields of "store value in address" instructions, and the address being
stored will be placed in instructions having addresses modified by this
same "An" symbol. In longhand coding, instead of using "An.m" to specify
the nunber m of "store value in address" instructions, one must instead

write down all "m" instructions needed. For example:

L|Iv(X0),FRN($W) : V+(X0) ,FRNX(X1) : SVA(X0),A1:SVA(X0),A1:SVA(X0),At

e« IFT(N) ,FRN(X2+A1) : %+(N) ,FRN(X2+A1) 2 o o . : ST(N) ,FRN(X2+A1) : o0 s
However, it should be noted immediately that the above technique is not
recommended. The "SVA" instruction is very slow, and when several are
used in sequence as above, even slower. Instead, some temporary location
and a free index register should be used to simulate the "SVA". This is
what IVY actually does in the translation of such a code written in
Algebraic language. Thus the above is better written as follows:

L|L(U),FRN(sW) : +(U) ,FRNX(X1):ST(U),D1:...
o «ILV(X14),D1(1): LVS(X14), X2, X14: LFT(N) , $Z(X1 4) : %+(N) , $Z(X13) t e 0 u:
ST(N),SZ(X14):...

where "D1" is some suitably chosen temporary location. Note that unnorma-
lized floating point is always used in address computation; all so-called

"fixed point" numbers are always stored and operated upon as unnormalized

=243

floating point, with an exponent of zero and the low order bit in bit
position 49, Also note that the effective address of instructions with
a stored address is computed by placing the sum of the computed address
and of the modifying index register into a spare index register, and
placing an address of zero ($Z) in the instructions with "stored" ad-
dresses. This technique should always be used; if possible, "SVA"
should never appear in a code.

Further restrictions on longhand coding.

1. Only fifteen index registers (X1,X2,...,X15) are allowed as
modifiers in 7030 longhand coding. In addition, however,
index zero, XO, is allowed as an operand in indexing opera-
tions or in the address field of other operations.

2, The programmer should note that X15 is used not only to
simulate the pathfinder register, but also to simulate X13,
X1k, X15, X16, etc., in the algebraic code. (X13 and X14
are used to simulate the store address in algebraic code,
and for other temporary purposes). Thus, if a longhand
code consists only of a few cards inserted in the middle
of the algebraic code, the programmer must save the con-
tents of X15, or the contents of the last index register
above X12 to which he has referred, to ensure that its
previous contents, if needed after the longhand segment,
are not destroyed. This can be done in two ways:

a. In the algebraic code:

Ill..,T1 = Xn
L|... (Longhand Code)...

I[X, =T1,...

where "X " is the last index register above

X12 refefred to by the algebraic eode, and "T1" is
some sultably chosen temporary locmtion; or

b. In the longhand code:

-2k

I|eso(Algebraic code)
L|sx(X15),T1:...(Longhand code)
L|...:IX(X15),T1: ...

I

«e.(Algebraic code)

the previous contents of X15, simulating some higher
index register, are here preserved by the longhand code.

The coder should note that because of the difficulties involved
in simulating extra index registers in algebraic programs and

of properly handling "L" type branches between algebra and long-
hand, great care must be exercised if a short longhand insert is
placed in the midst of an algebraic code. The unwary programmer
should therefore attempt to follow these rules:

a. In a short longhand insert in algebraic code, index
registers X13 and above should not be used, and "L"
branches between algebra and longhand should be stu-
diously avoided.

b. Generally, longhand inserts should be comprised at
least of formulas so that the above~mentioned diffi-
culties will not arise.

3. If IVY is being run on the 7030 under MCP, the programmer is not
allowed to use longhand instructions relating to input-output,

L. An IVY 7030 longhand instruction, together with its address,
modifiers, etc., must be complete on one card., For all practi-
cal purposes, the end of the card 1s treated as a colon. Thus,
the last instruction on a card need not be followed by e colon.

THE IVY 7030 LONGHAND INSTRUCTIONS
Class 1. Floating Point Operations
*
General format: ¢P(¢1)(¢0¢2¢5¢h) ,AD(Mi)

¢1, or the mode (N or U) must always be present.

¢2 and ¢3 are not allowed in some operations, noted below.

*This notation means that any one of the modifiers shown may be present.

=245~

AD(Mi) = NAME(MOM1M2M3MhM5M6),*NAMEn(MOM1M2M3MuM5),
$CS|$CSHI$D|$Dn(MOM1M2M5M6),$Ln(MO),$Z(MOM1M2M uMs)’

Ln(M0M1M2M3),F(MOM1M2M3),FS(M0M1M2M3M6),

* (MOMIMZMSMuMs), X,N(Ms),Xn(MOM1M2M3),

$Sn(MOM1M2M5).

Parameter algebra in parentheses modifies full word address
(18 vbits).

In E * I, SHFL, and SHFR, i.e., the floating point immediate
operations, the forms of address allowed are

P(MOM3),N(NbM3),x, and ¢Z(MOM1M2M3MhM5).

The addresses of these instructions are computed and inserted
as 11 bits plus sign. In these cases, "P" in parentheses mo-
difies the 11 bit field.

OPERATIONS IN CILASS 1

MNEMONIC MEANING "X" IF ¢2,¢5 ALLGWED
+ Add
+MG Add to magnitude
- Subtract
-MG Subtract from magnitude
* Multiply X
*+ Multiply and add
¥ Multiply and subtract
/ Divide X
D+ Add double
D+MG Add double to magnitude
D- Subtract double
D-MG Subtract double from magnitude
DL Load double X
DIWF Ioad double with flag X

*This notation means that any one of the modifiers shown may be
present.

-246-

MNEMONIC MEANING X" IF §,,¢, ALLHWED

Dx* Multiply double X
D/ Divide double X
E+ Add to exponent
E+I Add immediate to exponent
E- Subtract from exponent
E-I Subtract immediate from exponent
F+ Add to fraction
F- Subtract from fraction
K Compare X
KMG Compare magnitude X
KR Compare for range X
KMGR Compare magnitude for range X
L Load X
LET Load factor register X
IWF Load with flag X
M+ Add to memory
M+MG Add magnitude to memory
M- Subtract from memory
M-MG Subtract magnitude from memory
R/ Reciprocal divide X
SHF Shift fraction X
SHFL Shift fraction left
SHFR Shift fraction right
SLg Store low order X
SRT Store root X
SRD Store rounded X
ST Store X
EXAMPIES:
EXAMPLE MEANING
+(N),5.9632-06 Add indicated literal to contents of
accumilator
IFT(N),6(X3) Ioad factor register with C(6+VF[X3])
E+(N),CNT3(X1) Add EXP(CNT3+C[X1]) to exponent of accumulator
E-I(U),16 Subtract 16 from exponent of accumulator
E-1(U),$z(16) Same as above. Note alternative form
E-1(U),(16) Same as above. Note alternative form

247~

Class 2. Variable Field Length (VFL) Instructions

General format: ¢P(¢5)(¢O¢6¢7)(¢O¢2),AD(Mi),AE(MJ)
¢5, the mode, field length, and byte size, must always be present

In to-memory operations,noted below, the ¢6 or immediate modifier
is not allowed

Some operations noted below do not permit the O2 modifier

AD(M), the memory reference, has two interpretations, depending
on vhether or not the @ (immediate) or ¢7(progressive
indexing) modifier is specified.

1. Direct: AD(M.) = same as class 1. The P modifier in paren-
theses modifids bit addresses (24 bits).

2. TImmediate: AD(M,) = NAME(MOM1I-1‘2M5,M6M7)*,
xn/$sn(r/10n/11 M2M5) ,¥Cs /$D(MOM1M2M5.M7)FS(MOM1 MMM 6M7) R
$z(b/10r/11 142M§M,+1\15) ,*(MOM1 142M3MHM5) ,N(MOM3) .

In all cases where ¢ is specified, the result of P in paren-
theses and of N outséde parentheses is shifted properly and
a sign byte is constructed, according to the mode, field
length, and byte size specified. Normally when @, or @ is
specified the "$Z" and "N" entries should be used to obfain
immediate operands. Thke other entries supply addresses for
those unusual cases where addresses are to be operands.

AE(Mi), the offset field, = P(MOM5) only.

OPERATIONS IN CLASS 2

MNEMONIC MEANING ¢6 ALIOWED 0, ALLOWED
+ Ada X
+MG Add to magnitude X
- Subtract X

*
This notation means that the modifiers which appear must be separated
by commas as indicated.

-248-

MNEMONZIC MEANING ¢6 ALLOWED ¢2 ALLOWED

-MG Subtract from magnitude X
* Multiply X X
*4 Multiply and add X
) Multiply and subtract X
/ Divide X X
cv Convert X
DCv Convert double X
X Compare X X
KE Compare if equal X X
KF Compare field X X
KFE Compare field if equal X X
KFR Compare field for range X X
KR Compare for range X X
L Load X X
Icv Toad converted X X
LFT Load factor register X X
LTRCV Load transmit register
converted X X
ITRS load transit and set X X
INF Ioad with flag X X
M+ Add to memory
M+ Add one to memory
M+MG Add magnitude to memory
M- Subtract from memory
M-1 Subtract one from memory
M-MG Subtract magnitude from memory
SRD Store rounded X
ST Store X
EXAMPLES:
EXAMPLE MEANING
+(BU,6,1)(1),27,16(x1) Add 27 to contents of accumulator, offset
16 + ¢(X1).
L(B,17,2)(V+IC),8(X2),FST Load the number in location VF(X2), add
8 to VF(X2),subtract 1 from CF(x2).
Offset = C(FST)
ST(BU,64),STR3 Store right accumulator in STR3
M-(B,16,1),9512(16),2 Subtract a field from the right accumu-

lator, offset 2, from field of same
length starting at bit 16 in left
accumlator.

-249-

Class 3. Connective Operations

General format: ¢P(¢5)(¢8)(¢0¢6¢7);AD(Mi);AE(Mj)

This class is similar to class 2 (just considered) except for the
following:

1. The mode specified in ¢5 must be BU,

2. The connective modifier ¢ must always be present. The minus
modifier ¢2 is never allowed.

5. No sign byte is ever constructed for immediate addresses.

OPERATIONS IN CIASS 3

MNEMONIC MEANING ¢6 ALIOWED
Cc Connect X
CM Connect to memory
cT Connect for test X
EXAMPLES:

EXAMPLE MEANING
CM(BU,1,1)g1111),¢s15(63) Turn on noisy mode indicator
c(Bu,64,8)(0111),ARF1,20 "or" (inclusive) contents of ARF1

and accumulator, offset 20
¢(Bu,24,1)(0000),0 Clear accumulator
CT(BU,FN+3,8)(0011),PLN(64+X3) Test indicated memory field

for zero

Class 4. Direct Index Arithmetic

General format: OP(Xn),AD(Mi)
where Xn is the operand index register

AD(M,) = same as class 1. P in parentheses may, in these
operations, modify full word (18 bit) or half word (19 bit)
addresses, as indicated below.

-250-

OPERATIONS IN CIASS 4

MNEMONIC MEANING P MODIFIES MNEMONIC MEANING P MODIFIES
KC Compare count 19 bits SC Store count 19 bits
KV Compare value 19 bits SR Store refill 19 bits
IC Load count 19 bits sV Store value 19 bits
IR Load refill 19 bits SVA Store value in 19 bits

address
v Ioad value 19 bits sX Store index 18 bits
LVE Ioad value 19 bits V+ Add to value 19 bits
effective
IX Load index 18 bits V+C Add to value, 19 Dbits
count
RNX Rename index 18 bits V+CR Add to value, 19 bits
count, and
refill

Class 5. This class is composed of the single operation "IVS," or
"Load value with sum", The format of this operation is:

LVS(Xn)’Xi’XJ""’Xm
where X 1is the operand index register and the others are

the index registers the sum of whose value fields are
placed in the value field of Xn.

Class 6, Immediate Index Arithmetic

General format: ¢P(Xn),AD(Mi)
where Xn is the operand index register
AD(M;) = NAME(MM, M M), X, /85, (M), BCS/ED(MM, M),

FS(MM, ,M M), $Z(M M. M,), *(M MM,),N
oty Mgty oMy,)5 * (MM My,

The result of "P" in parentheses and "N" may be placed
in an 18-bit or 19-bit field in the instruction, as
noted below. Normally the "gz" and "N" entries are
used; the other entries listed above supply address

fields, in the rare cases when these are wanted as
operands.

-251 -

OPERATIONS IN CIASS 6

MNEMONIC MEANING IENGTH OF P OR N
C+I Add immediate to count 18 bits
c-I Subtract immediate from count 18 bits
KCI Compare count immediate 18 bits
KVI Compare value immediate 19 bits
KVNI Compare value negative immediate 19 bits
ICI Load count immediate 18 bits
IRI Ioad refill immediate 18 bits
IVI Ioad value immediate 19 bits
LVNI Load value negative immediate 19 bits
V+I Add to value immediate 19 bits
V+IC Add to value immediate, count 19 bits
V+ICR Add to value immediate, count, refill 19 bits
VeI Subtract from value immediate 19 bits
V-IC Subtract from value immediate, count 19 bits
V-ICR Subtract from value immediate, count, 19 bits

refill

Class 7. Pseudo-operations to aid in indexing

These operations are used to construct index words, value
fields, etc., which can be loaded into index registers using some of the
indexing instructions discussed above. Each has a distinct format, and

these should be studied carefully.

PSEUDO-OPERATION MEANING ADDRESSES ALLOWED

VF,AD(M,) value field Same as Class 6. A signed, 24-bit
* address is assembled at the next
half-word location., "P" and "N"
are 24-bit quantities.
CF,AD(M,) count field Same as Class 6. An unsigned, 18-bit
. address is assembled at the next
half-word location. "P" and "N"
are 18-bit quantities.

-252-

PSEUDO-OPERATION MEANING

RF.AD(Mi)

W AD(Mi).AE(Mi), index word

AF(M,),P

refill field

ADDRESSES ALLOWED

xn/dén(MOM1).*(MoM]),
L (M) F/FS(MOM1),$bs/$bs,(MOM])
SD/$Dn(MOM]),NAME/NAMEn(MOM1).

An unsigned. 18-bit address is
assomed as the neat half-word
location. "P" is an 18 bit
quantity.

First field: same as "VF."

Second field: same as "CF."

Third field: same as "RF.,"

Fourth field: parameter algebra
for flag bits, < 7.

A 64-bit index word is assembled
at the next full-word location.

EXAMPLES OF INDEX ARITHMETIC, ETC.

EXAMPLE

v+I(x1),8

MEANING

Value field of X1 is incremented by

8 half-words

C+I(x2),8
V+(X3),L1:e..:(L1)VF,-8

XW,PRF(§WA) , PRF(gWC) ,*

Count field of X2 is incremented by 8
Value field of X3 is decreased by 8 bits

Index word: value field contains address

of PR¥, count field contains count, re-
fill field contains address of current
instruction

Class 8. Unconditional Branching, Execute, and Refill

General format: ¢P,AD(M1)

AD(M,) = $Z(M1M2M3MuM5),Ln/F/FS/*(MOM]MQMSMhM5)‘

#SR(in branches only, if preceded by "LVI(§P),*")

"P" in parentheses modifies half word addresses
(19 bits) except as noted.

253

MNEMONIC

BD
BE
BEW
BR
CNgP

EX
EXIC
N@P

RCZ

Class 9. Indicator Branching

General format: ¢P(¢9), AD(Mi)

MEANING

Branch

Branch disabled

Branch enabled

Branch enabled and wait

Branch relative

Conditional no operation (inserted only
if location counter is not set at
full word)

Execute

Execute indirect and count

No operation

Refill (P modifies 18 bits)

Refill on count zero (P modifies 18 bits)

EXAMPIES:
MEANING

Branch to fifth half word following
Branch to fifth half word following

¢9 is one of the indicator mnemonics listed below, or its
decimal numerical equivalent.

25k«

TABLE A3.2

INDICATOR MNEMONICS AND DECIMAL EQUIVALENTS

MNEMONIC DECIMAL MEANING
AD 16 Address invalid
AE 61 Accumulator equal
AH 62 Accumulator high
AL 60 Accumulator low
BTR 39 Binary transit
CBJ 8 Channel busy reject
CPUS 5 CPU signal
Cs 13 . Channel signal
DF 20 Data fetch
DS 19 Data store
DTR 4o Decimal transit
EE 11 End exception
EK 3 Exchange control check
EKJ 6 Exchange check reject
EFP 12 End of operation
EPGK 9 Exchange program check
EXE 18 Execute exception
IF 21 Instruction fetch
1J 2 Instruction reject
1K 1 Instruction check
IR 25 Imaginary root
Ic 22 Lost carry
1S 26 Lost significance
MK 0 Machine check
M¢P 55 To-memory operation
M 63 Noisy mode
¢p 15 Operation code invalid
PF 23 Partial field
PGO-PG6 b1-47 Program indicators 0-6
PSH 27 Preparation shift
greater than 48
RGZ 58 Result greater than zero
RLZ 56 Result less than zero
RN 59 Result negative
RU 34 Remainder underflow
Rz 57 Result zero
TF %5 T flag
TS L Time signal
UF 36 U flag
UK 10 Unit check

-255-

MNEMONIC

UNRJ
USA

XCZ

XL
XPFP
XPH
XPL

XVGZ
XULZ
XVz

TABLE A%.2 (continued)

DECIMAL

7
17
37
48
23
38
5k
52
28
30
31
29
32
51
49
50
2l
33

MEANING

Unit not ready reject
Unended sequence of addresses
V flag

Index count zero

Index equal

Exponent flag

Index high

Index low

Exponent flag positive
Exponent high

Exponent low

Exponent overflow

Exponent underflow

Index value greater than zero
Index value less than zero
Index value zero

Zero divisor

Zero multiply

For Class 9, AD(Mi) = same as Class 8, except only X1 can

MNEMONIC

BI
BIZ
BZI
BZ1Z

participate in modification.

OPERATIONS IN CILASS 9

Branch on
Branch on
Branch on
Branch on

EXAMPLE:

BI(MM),L3 (or BI(63),L3): Go to L3 if

-256-

MEANING

indicator

indicator and set to zero

zero indicator

zero indicator and set to zero

"NM" indicator is on

Class 10. Bit Branching

General format: ¢P,AD(Mi),AE(MJ)

AD(Mi)
AE(MJ)

MNEMONIC

BB
BB1
BBN
BBZ
BZB
BZB1
BZBN
BZBZ

same as Class 2 (direct)

same as Class 9

OPERATIONS IN CLASS 10

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

EXAMPLE:

MEANING

on bit

on bit and set to one

on bit and negate

on bit and set to zero

on zero bit

on zero bit and set to one
on zero bit and negate

on zero bit and set to zero

BB1,$S15(63),%(2): turn on noisy mode indicator and go
to next instruction

Class 11, Index Branching

General format: ¢P(Xn), AD(Mi)

where Xn is the operand index register;
AD(Mi) = same as Class 9

MNEMONIC

CB
CB+
CB-
CBH
CBR
CBR+

CBR-~

OPERATIONS IN CLASS 11

Count and branch

MEANING

Count, branch, and increment value by full word
Count, branch, and decrease value by full word
Count, branch, and increment value by half word
Count, branch, and refill

Count, branch, refill and increment value by full

word

Count, branch, refill, and decrease value by full

word

-257-

MNEMONIC MEANING

CBRH Count, branch, refill, and increment value by half word
CBZ Count and branch on zero
CBZ+ Count and branch on zero and increment value by full word
CBz- Count and branch on zero and decrease value by full word
CBZH Count and branch on zero and increment value by half word
CBZR Count, branch on zero, and refill
CBZR+ Count, branch on zero, refill, and increment value by
full word
CBZR- Count, branch on zero, refill, and decrease value by
full word
CBZRH Count, branch on zero, refill, and increment value by
half word
EXAMPLE:

LIIX(X1),L1:2,(X1):CB+(X1),%(=1): o0 (L1)XW,BXT($WA) ,BXT(HWC) : o ..

Set block "BXT" to zero

Class 12, Data Transmission Operations

General format: ¢P(¢11)(¢0¢),AD(Mi),AE(MJ)
¢11 = Xn in direct operations, P < 15 in immediate operations

AD(Mi),AE(MJ) = same as Class 1

OPERATIONS IN CILASS 12

MNEMQNIC MEANING
T Transmit
SWAP Swap

EXAMPIE:

T(15)(I),X1,NAME: Save all 15 index registers in block "NAME"

Class 13. Two Miscellaneous Operations

General formab: ¢P,AD(Mi)
AD(Mi) = same as Class 1. P modifies 18 or 19 bits as noted below

-258-

OPERATIONS IN CIASS 13

MNEMONIC MEANING
SIC Store instruction counter if ...
(may precede half word branch and
indicator branch only) (P modifies
19 bits)

Z Store zero (P modifies 18 bits)

The following table summarizes all 7030 longhand instructions

for quick reference purposes.

=259~

TABLE A2.3

7030 LONGHAND MNEMONICS AND CLASSES

MNEMONIC CLASS MNEMONIC CLASS MNEMONIC CIASS MNEMONIC CLASS

t 1,2 D¥* 1 LIRS 2 SWAP 12
MG 1,2 D/ 1 (1) 4(6) SX b
* 1,2 Dev 2 LVNI 6
* 1,2 Dev 2 LVE L T 12
¥t 1,2 DL 1 s 5 V+ L
/ 1,2 DIWF 1 IWF 1,2 VI 6
B 8 E+(I) 1 X L V4+C L
BB(1,N,2) 10 EX 8 Mt 1,2 V+IC 6
BD 8 EXIC 8 MIMG 1,2 V+CR Ly
BE 8 Ft 1 M1 2 V+ICR 6
BEW 8 K 1,2 NgP 8 VF 7
BI(Z) 9 Kc(1) 4,6 R 8 XW 7
BR 8 KE 2 R/ 1 z 13
BZB(1,N,Z) 10 KF 2 RCZ 8
BZI(Z) 9 KFE 2 RF 1
c 3 KFR 2 RNX i
C+I 6 KMG 1 sC s
CB(+,-,H) 11 KMGR 1 SHF(L,R) 1
CBR(+,-,H) 11 KR 1,2 SIC 13
CBZ(+,-,H) 11 Kv(I) 4(6) SLg 1

KVNI 6
CBZR(+,-,H)11 L 1,2 SR 4
CF 7
CM 3 1c(I) 4(6) SRD 1,2
CN@P 8
CT 3 eV 2 SRT 1
cv 2 LFT 1,2 ST 1,2
D+ 1 IR(T) 4(6) sv Ly
DMG 1 ITRCV 2 SVA i

=260-

Coding example. The following example is equivalent to the alge-

braic formula "MX" discussed in Chapter 4, page 78, and should be studied

thoroughly:
73|74|75]76[|77]78{79]80
IVY oate PAGE NAME PROBLEM "p
2 RUN 72

C| MIX A CR@SS A SECTIgNS

L] (MX) LX(X9), $PI® I =XI:%S=X2:¥M=X3

LX(M), L6:(L5) LV(S), MS(M+1).BI(XVZ), LI

L(V), C(SWP): +(U), CXX(M): LV(X14), $S12 (1)

LX(I),L7 . V+(I), X14:Z,(I): CB+(I),*(-1)

(L2) LV(T), MN(S+1): LIN), MDV(S): % (N), EV: 4+(N), 1.0: ST(N), T!

BI (RN),L3

#(N)(A), MD(S): ST(N),TI: L(U),C($WP):+(U), CXX(I): LV(XI3), $SI1201)

LX(I), L7 - V+(1), XI4:V+(XI3), I LN}, TI:*(N),(X13)

+(N),(I): V+ I (Xi3),2.CB+(I),*(-4)

L{N),MD(S): BI(RN),L!

V+I(S),2:8,L2

(Lnce+(m), LS L(u), ICT: BZI(RZ), L4

LVI ($P),*. B, $PR. CSW, $F, FMI($WP). CSW, $A, C(SWP)

CSW, HM: CSW,GM: CSw

(L4) B, (XS+2)

(L3)LVI(3P),% . B, $@P . CSW, EP2 ($WP)

[ie) xw, 1, (MM):(L7) XW, 1, (CXX2)
]

-261-

Internal formats on the 7030. The formats of internal words on

the 7030 are important if the programmer is to know how to handle them
using the longhand instruction set. These formats are as follows:

1. Floating point words:

(E : lOIlgllI2 - I ?5SITUVLS]63

where E = exponent; ES = exponent sign; F = normalized
fraction; T = tag, if any; TUV = flag bits; S = fraction sign.

2a. Fixed point words:

[o—ofo] __ N_Jo—o|Tuvlsl
o) 101112 32 49 59 63

where N = fixed point number of 37 bits or less, right
adjusted so that the low order bit occupies position 9;
TUV = flag bits; S = sign. Note that fixed point num-
bers are in reality floating point words, unnormalized,
with exponent = O, The number is adjusted so that it
can be loaded into a value field by addressing the se-
cond half word.

2b., Fixed point double-stored numbers, tag length P:

[o——odlo| Q@ Joo] T |Tuv|s] P<I0
0 01l 12 a9 59 63

[o——o] o} Q | T [Tuv] s} P>10
0 101112 49-{P~10) 59 63

Where Q = the "Q" portion, of 37 or 37-(P-10) bits or
less, right adjusted so that the low order bit appears
in bit 49 or 49-(P-10); T = the "T" portion, right ad-
Justed so that the low order bit occupies position 59;
TUV = flag bits; S = the sign of "Q".

-262-

e

L,

Calling sequence words:

[0o——o[o] $xxx Joo] swa jJo—o}o00]s]
0 1011 12 29 32 49 60 63

where "$XXX" is the BCD representation of the character
"XXX," right adjusted so that the last character loaded
occupies bit positions 24-29; and "$WA" represents the
quantity in the "$WA" portion, right adjusted so that
the low order bit occupies position 49,

Control words

.o ojo] $wc oo $wa Jo—o| F [s]
0 o2 29 32 49

The quantities "gWC," "gWwA," "F," and "S" are governed
by the same conventions as in the 7090 control word,
discussed at the end of Appendix 2,

~263-

INDEX

NOTE: Special symbols are found as follows:
""" i found in the A's §asterisk);
"d" 15 found in the D's (dollar).

U card, 35-37
"A" entry, in loading date, 5t
“A" modifier

in algebra, 78-T9

in fixed point, meaning, 87

BCD characters

Table III, 66

Table 9.1, 186
Binary cards, relocatable, loading of, 38-39
Binary key 63, to control on-line printing

in index algebra, meaning, 90,170
Accuracy of results, 166-167
Address modifiers, T4-83
allowed with symbols, 191-192
in 7030 longhand, 235-236
in 7090 longhaund, 211-212
table of, 193
Advence f£ilm, 148
Algebra

machine and display, comparative examples, TOff.

sumnary of, 190ff.
see also type of algebra desired

An gee store address

Arrays
definition of, 48-49
loading, on "D" cards, 49-53
printing of

30,130,133

Binary tape

see tape

Boolean

algebra, 93-96

literals, in loading data, 51
modifier, in algebra, 78-79
operations, 190

Branching

conventions, table of, 116-117

to end of calling sequence, 105-106ff.
formula, 102-103

formula set, 103-10k

local, 97-102

table of types, Table 9.8, 195

in 7030 longhand, 24Off.

in 7090 longhand, 213ff.

form of printout, 135ff.
calling sequence words for, 140ff.
Assembly card, 35-37

"'Cc" cards, 30-31
Calling sequence block ("gcsS")

Assembly program, 119-120
celling sequence, 197
coding examples, 204-207

Assignment of space
for calling sequences, 6l
for data, 48-49
for remarks, 63

"%" card, 22-23

"%" convention, algebra, 55,91

"#" convention, longhand, 211,236

Axes, generate, microfilm, 152

"B" cards, 23-26

YB" entry, loading datae, 50

"B" modifier, in algebra, 78-79,96
Backspace tape, 122-123

-264 -

set by "gswW," 127
set by "$TP," 123
set by "$IT," 129

Calling sequence blocks (defined on "K" cards)

altering, coding examples, 180,182-184

definition of non-numbered symbols for, 47

losding of, 64-67
numbered symbols used for, 18,33

Calling sequence words

addressing, 108ff.
altering, examples, 180,182-184

conventions, Table 9.9, 196
format for, 65-67

in 7030 longhand, 241ff.
7030 internal format, 263
in 7090 longhand, 21k

7090 internal format, 233

Calling sequences "D" cards, 31

addressing entries in, 108ff. definition of parameters om, 43-il, 46
altering, coding examples, 176-18% definition of symbols on, 43-49
in code, 105 formet of, 43-57
on "K" cards, 64-67 loading of data on, 49-53
returns to, 105-106ff, summery of entries on, 60-61
Card punches, Table 9.1, 186 Data
Card types, 22-42 definition, on "D" cards, 43-47
tebles of, 42,189 double-stored, entry on "E" cards, 58-59
Character manipulation program, 154-156 equivelent blocks, 55
calling sequence, 202 loading, on “D" cards, 49-53,60
Characters loading, on "E" cards, 57=59,60
card characters, punches, etc., Table 9.1,186 printing of, 134ff.
Hollerith, and octal equivalents, Table III, 66 punching of, 146~147
plotting, and decimal egquivalents, Table VIII,151 reading or writing on tape, 33-35
set used by IVY, 17 suppressed, 49
Classes of operations use of jump feature, 55-56
T030 longhand, 260 Decimal equivalents of 7030 indicator
7090 longhand, 231 mnemonics, 255-256
Code, complete, 4, 173176 Decimal equivalents of characters,Tsble 9.1,
Coding examples, 78, 99, 113, 155,156,162-184 186
7030 longhand, 261 Definition cards, 31
7090 longhand, 232 definition of parameters on, 43-lk, L6
Coding forms, 21 definition of symbols on, 4349
example, 4,232,261 format of, 43-57
Colon loading of data on, 49-53

used to separate calling sequence words, 64,105 Difference of squares, example, 167
used to separate longhand instruections, 212,239 Dimensions

Column binary cards, relocatable, loading of, 38-30 see arrays
Column indices, in printing, 133,135 Direct algebra
Comment cards, 30-31 fixed point, 87 ff.
Compare remark characters, 154-155ff, index register, 90,100,170
Complete code, 4,173-176 Disk program, 152-153
Conciseness of code, 167-168 ’ calling sequence, 201
Conditions used to "ping-pong" code, 208
for conditional branching, 98 "g" symbols, 17-18
for jump features, 56 gcs, 84-85, 123,127,129
Console key 35, to control on-line printing, #D, 85,110-114,215
30,130,133 $E, 115
Continuation #L,,85-86,191,204f¢,
of algebralc statements, 86 , 84,96
of entries on "D" and "gE"cards, 47 gp, 101£2,
of types of cards, table, 42 $2,85,108-109,211
not permitted in longhand, 218,245 not allowed in calling sequences, 105
Continued fractions, coding example, 72 subroutines, 118-156
Control characters, in format, 133 table of, Table 9.2, 187£f.
Control punches, 21-22 Double-sgtored data
see also, individual control punches coding examples, 171173
("A," "B," ete.) entry of, on "E" cards, 58-59
Control word modifiers for addressing, 79-80, 83-84
description of, 18 printing of, 143-144
in error detection, 19-20 punching of, 147
7030 format, 263 7030 internal format, 262
T090 format, 233-234 T090 internal format, 233
Control word modifiers Dump program, octal, 130-131
in addressing calling sequences, 108-109 Dynamic algebra
in algebra, 82-83 fixed point, 88
in calling sequences, 65-67 index register, 90,100,170

CSW pseudo-operation, 21k,241ff,

-265-

"E" cards, 40
format for, 57-59
summary of entries, Table II, 61
"E" entry in date loading, 53,61
Efficient coding, 162-168
End-of-file
on card reeder, 119
on tape, 122
Enter date cards, 4O
formet for, 57-59
summary of entries, Table II, 61
Entries, reference point, Table 9.8, 195
Equel sign, medning of, 68
symbols allowed left or right of, 191
Equivalent blocks
definition of, 55f61
restrictions on, "E" cards, 57-58
Errors
control word in detection of, 19-20
detection of, 14-16
indications of, 157-161
by "¢DK, " 153
by "$FR," 145
vy "grP," 124
Examples
see coding examples
Execute card, 39-40
Execute instruction, 115
Exponent digits, in printing, 139
Expression modifiers, 83-84

"F" cards, 38-39
FAC, 85-86, 191
FAD, 85-86, 191
Fixed point algebra, 86-89
modifier, T78-79
operations, 190
Fixed point literals
in definition of arrays, 48
in loading of data, 50,51
Fixed point numbers
printed as integers, 133
punched as integers, 147
7030 internal format, 262
7090 internel format, 233
Floating point algebra, 69-86
allowed operands, T3
examples, TOff.
operations, 190
Floating point literals
in algebra, T3
in loading data, 51
in 7030 longhand, 236,2h6-247
in 7090 longhand, 211,219-220
Floating point numbers
70%0 internal formet, 262
7090 internal format, 233
Format statements, for printing, 132ff.
menipulation of characters g.n, 154-156
sumary of conventions, 199-200
Formats, card, Table 9.3,189

Formule
branching between, 102-103
definition of, 27
entries, Table 9.8, 195
Jjump feature, 104-105
may not be written on tape or disk, 208
names, defined on "I" or "L" cards,
31, LO-U1
pemes, not defined when "A" card encoun-
tered, 35
number of, 27
orgenization, diagram, 11k
in 7030 longhand, 240 ff.
in 7090 longhand, 213 ff.
Formule set
branching between, 103-10k
definition of, 27
entries, Table 9.3, 195
Jump feature, 104-105
names, assigned to relocatable blocks, 38
names, defined on "D" cards, 31,40-41,47
organization of, diagram, 114
writing of, on tape or disk, 208
in 7030 longhand, 240 ff.

in 0 longhand, 213ff.
Forward 7s%%.ce ta%‘za, 1’23 3

Fraction digits, in printing, 139

Generate axes, microfilm, 152
Graphs, on microfilm, 147-152
Gricd
lebel, microfilm, 149-150
select, microfilm,148-149

Hard copy, microfilm, 148

High density tape, 122

Hollerith Characters, and octel equivalents
Table III, 66
Table 9.1, 186

Horizontal option, microfilm, 148-149

HTR, used to end 7090 calling sequences, 214

"I" cards, 37
"I" entry, in data loading, 52-53
ID, on disk, 153
1D, on tape, 122
checking of, 123
Identification card, 22-23
Immediate algebra
fixed point, 87ff.
index register, 90
Immediste remarks, 14k-145
Index loops, 92-93, 99-100, 169-171, 195
Index multiples
coding examples, 168-169
loading of, 53
usage of, 54
Index register algebra, 89-91
operations, 190
Index registers
always take on positive values, 76,90
as address modifiers in algebra, 75-78

-266-

Index registers (contimued)
definition of number of, 28~29
in efficient coding, 163
renaming of, 91-92
usage of, in 7030 longhand, 241-242,245
usage of, in 7090 longhand, 217-218

used to address calling sequence words, 108ff

used to return to calling sequences,
105-106£F, 195
Indicator mnemonics, Table A3.2, 255-256
Instruction cards, 37
Instructions
Reading or writing on tape, 35-37
table of, algebraic, 190
See also operations
Instructions to operator
calling sequence, 201
n¢n cards, 35
"44P" Routine, 153-154
Integer digits, In printing, 139
Internal formats of words
(7030), 262-263
(7090), 232-234
Interpolants, loading of, in data, 52-53
IgD dard, 24-25

J#B card, 2k
Jump feature
in data loading, 55-96,61
in efficient coding, 165
in formulas and formula sets, 104-105
restrictions, on "E" cards, 57-58
"K" blocks
See calling sequence blocks
cards, 32=33
format for, 64-67

"K“
Key

"Lll
“L“

cards, 37-38
entries
See local entries
Label grid, microfilm, 149-150
Large programs, how to code, 203-209
Iine format, in printing, 133,138
Literals
in algebra, T3
in definition of arrays, 48
in loading of data, 50-51
in parameter algebra, 45
in 7030 longhand, 236,245-246
in 7090 longhand, 211,219-220
L See local entries
IBa.ding
of data on "D" cards, 49-53
of parameters, 43-i4, 46
Loading program
entry to from code, 119

35(63), to control onm-line printing, 30,130,133

return from, using "X" card, 39-40,41,119

Local entries
conditional branching to, 97-98
definition of number of, 28

-267-

locel entries (continued)
examples of, 98-99
pathfinder branching to, 101-102
restrictions on, 100-101
unconditional branching to, 97
in 7030 longhand, 240ff.
in 7090 longhand, 213ff,
Loglical algebra
See Boolean algebra
Longhend cards, 37-38
for T030, 235-263
for 7090, 210-23k
Longhand coding (7030), 235-263
example, 261
restrictions on, 244245
longhand coding (7090), 210-234
example, 232
restrictions on, 217-218
Longhand operations (7030)
general format, 240
table of, 260
Ionghand operations (7090)
general format, 212
table of, 231
Loops
index, 92-93,99-100,169-171,195
with use of local entries, 99-100
Low density tape, 122

"M" entry in data loading, 53
Machine mumber, 85-86, 191
Manipulation of characters, 154-156
Manipulation of the symbol table, 203-209
Matrices (two-dimensional ma.yss

definition of, UB8-49

loading, on "D" cards, 49-53

multiplication of, example, 99,113

printing of

calling sequence for, 140
form of printout, 135ff.

MCP

control cards, 23-26

7030 longhand I/¢ not allowed with, 245
“M;" modifiers, 211-212,238
Microfilm

calling sequence, 201

plotting on, 147-152

printing on, "M" control, 133
Mnemonics

7030 indicator, 255-256

7030 longhband, 260

T090 longhand, 231
Modifiers,

address, T4-83

alloved with symbols, 191-192

expression, 83-8k4

tables of, 193,194

in 7030 longhand, 237-239

in 7090 longhend, 211-212
Move characters among remarks, 154ff.
Multiples, entry of, in data, 53

See also index multiples

N.S.I.F.E. field in format statement, 139
Names
See symbols
NBA, 85-86,191
NIA, 85-86,191,205£f.
Numbered symbols, 18
definition of, 29
used in "K" and "R" blocks, 32,33
Numbers
format control of, 138ff,
printing of, i34ff,

II¢II C&I‘ds, 35
Octal
equivalents of characters, Table 9,.1,186
literals, in loading data, 53
printing of tags in, 133
Octal dump program, 130-131
calling sequence, 198
0ff-line printing, control "T," 133
"@:" modifiers, 238-239
On-line printing
key 35 {63) used to control, 30,130,133
Operands
in algebra, table of, 187ff.
in Boolean, 96
in fixed point, 87
in floating point, 73
in index algebra, 89
Operation modifiers (7030), 238-239
Operations
algebraic, table of, Table 9.%,190
Boolean, 93
fixed point, 86-87
floating point, 69
index register, 89
longhand, 7030 format, 24O
longhand, 7090 format, 212
Operator, instructions to
u¢u ca.rds, 3%
"IgP" routine, 153154
Organization of code, diagram, 114

npt card, 30
Page spacing (print progrem), 131-132
Parsbolic integration, example, 172
Parallel operation on tape, 12l
Parameter algebra, Ul
as address modifier, 75-78
"dp" not allowed in, 111
as part of double-store modifier, 79-80
in defining remarks, 62
in exponents, T3
in index loops, 92
in loading data, 50
Parameters
definition and loading of, 43-il,46
printing of, 141-142
Parentheses
conventions for use, in algebra, T0-T72,190
diagram of use, in algebra, T1
efficient coding with, 164

-266-

Parentheses (continued)
enclose address modifiers, 74,211,238
enclose branches in algebra, T4ff,
enclose calling sequences, 64,105
enclose dimensions, "D" cards, 48
enclose double~store specifications,
“E" cards, 58
enclose entry points, in longhsnd, 213,240
enclose special entries, "D" cards, 51-53
in index loops, 92
must be closed in immediate remarks, 145
not allowed in parameter algebra, Ul
on "s8" cards, 27ff
Pathfinder branching, 101£f,
in 7030 longhand, 241£f,
in 7090 longhand, 213£f.
Pathfinder register, 101
in 7030 longhand, 2L1f£f.
in 7090 longhand, 213ff.
"Ping-ponging" a code, 205-209
Plotting characters
Table VIIT, 151
Table 9.1, 186
Plotting, on microfilm, 147-152
Points, plotting of, on microfilm, 151-152
Polynomial evaluation, examples, 72,166,168
Print card, 30
Print program, 131146
Print suppress card, 30
Printing
double-stored numbers, 143-144
error comments, 1214-,1&5,153,157-161
immediate remarks, 1ik-145
listing of code, 30
matrices and arrays, 142-143
parameters, 141-142
remarks, 132, 134
Problem card, 2%
Punch program, 146-147
calling sequence, 198-199
Punches, Table 9.1, 186

"Q" portion of double-stored data
loading of, 58-59
modifier for handling, 79-80,83-84
printing of, 143-1kk4
Quadratic formula, example, 72
Quantity
See "Q" portion

"R" cards, 31-32
format for, 61-64
“R" entry in data loeding, 52
Read disk, 153,208
Read tape, 123-124
examples, with long codes, 203-209
Reciprocal divide
definition, 69
in efficient coding, 163-164
uses of, T2
Reel card, 25-26
Reference point entries, Table 9,8, 195

Relocatable binary cards, loading of, 38-39
Remark cards, 31-32
format for, 61-64,152£F,
Remarks
definition and loading of, 61-64
manipulation of characters in, 154=-156
mlti-line, 62
nunbered symbols used for, 18,32
printing of, 132,134
used as format statements, 132ff,,199-200
vriting of, on microfilm, 150-15%
Remarks, immediate, 14k-145
Renaming of an index register, 91-92
in 7030 longhand, 242-243
in 7090 longhand, 215
Repeating, in data loading, 52
Reservation of space
for calling sequences, 64
for data, 48-u9
for remarks, 63
Returns to calling sequences, 105-106ff.
Rewind tape, 122
Row indices, in printing, 133,135

"s" card, 26-30
"s" entry, in data loading,52
Select grid, microfilm, 148-149
Serlal operation, on tape, 12k
Sign modifiers in algebra, 81
Simpson's rule, example, 172
Skipping, in data loading, 52
Spacing
page (print), 131-132
preceding printed number, 139
tape, 122-123
Special "g" symbols, Table 9.2,187ff.
Squares, differences of, example, 167
STA, usage of, 215-216
Start card, 26-30
Store address
symbol, definition of number of, 28
use of, in algebra, 75-78
use of, in 7030 longhand, 243-2k4k
use of, in 7090 longhand, 215-216
Subroutine conventions
in 7030 longhand, 241ff,
in 7090 longhand, 213ff,
See also Pathfinder branching;
Calling sequence words
Subroutine data blocks {"$D"), usage of, 110-114
in 7030 longhand, 242
in 7090 longhand, 215
Suppressed data blocks, 49
SVA, usage of, 243
Swep modifier, 83
Switch test program, 126-128
"gCS" set by, Table VI, 127
Symbol table, 18
manipulation of, 203-209
Symbols
allowed in algebra, 191
A, X, and L, 28-29

-269-

Symbols (continued)
defined by programmer, 17,46-48
for equivelent blocks, 55
for parameters, L3-Llh
numbered, 18,19
order of definition of, 19
single character, 19
special "S," 17-18 84-86
system (7030) 236-237
table of, Table 9.2, 187ff.
in 7030 longhand. 235-23%6
in 7090 longhand, 210-211

System symbols (7030), 236
Taeble A%.1, 237

"T" card, 33-35
"T" portion of data
modifier for, 79-80, 83-89
printing of, 43-14l4
in octal,133
restricted to unsigned fixed point
integer, 58
Tables
See item for which table is desired
Tag
See "T" portion
Tape
assembly, read by $AP, 119-120
assembly, written by AP, 13,35-37
used in large codes, 203-205
used to simulate disk, 152-153
Tape, binary
manipulation of, "T" card, 33-35
manipulation of, "STP," 121-126
used for "ping-ponging" code, 2u5-20Y
Tape control card, 33-35
Tape manipulation program, 121-126
example of calling sequence, "K" card, 67
Tape numbers, Table V, 120-121
Test trigger routine, 128-130
calling sequence, 197-198
"gcs” set by, Table VII, 129
Transfer tables, 107-108,171

Units oy an expression, 86
Unload tape, 122

Variable length calling sequences, 179-182
Vectors
definition of, 48-49
loading, on "D" cards, 4y-53
plotting of, on microfilm, 151
printing of
calling sequence entry for, 139-140
form of printout 135ff.
Vertical option, microfilm, 1hs-1hy

"W" entry, losding data, 51
Write
code on tape, 205-209
end-of-file on tepe, 122
end-of-tape record, 122

Write (continued)
record on disk, 153
record on tape, 12k

"X" card, 39~-40

-270-

Xh See index registers

"z" entry in loading data, 51-52
Zeroes
entered in data, 51-52
in address (§2), 85, 108-109, 211,236

